On the Parametric Approximation Results of Phillips Operators Involving the q-Appell Polynomials

被引:0
|
作者
Md. Nasiruzzaman
Khursheed J. Ansari
M. Mursaleen
机构
[1] University of Tabuk,Department of Mathematics, Faculty of Science
[2] King Khalid University,Department of Mathematics, College of Science
[3] China Medical University (Taiwan),Department of Medical Research, China Medical University Hospital
[4] Aligarh Muslim University,Department of Mathematics
关键词
Szász operator; Generating functions; Dunkl analogue; Generalization of exponential function; Modulus of continuity; Weighted modulus of continuity; 41A25; 41A35; 41A36;
D O I
暂无
中图分类号
学科分类号
摘要
The motive of the present paper is to construct q-Phillips operators generated by the parametric extension of exponential function by including the parameter ζ∈[-12,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\zeta \in \big [ -\frac{1}{2}, \infty )$$\end{document}. First we give the basic estimates to obtain their central moments and then study the Korovkin’s-type approximation theorems. Moreover, we investigate local approximation results via Peetre’s K-functional, modulus of continuity and Lipschitz-type approximation.
引用
收藏
页码:251 / 263
页数:12
相关论文
共 50 条
  • [31] Approximation results on Dunkl generalization of Phillips operators via q-calculus
    Nasiruzzaman, Md
    Mukheimer, Aiman
    Mursaleen, M.
    ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (1)
  • [32] Certain Results of q-Sheffer-Appell Polynomials
    Yasmin, Ghazala
    Muhyi, Abdulghani
    Araci, Serkan
    SYMMETRY-BASEL, 2019, 11 (02):
  • [33] Szász-Durrmeyer Operators Involving Confluent Appell Polynomials
    Kanat, Kadir
    Erdal, Selin
    AXIOMS, 2024, 13 (03)
  • [34] Jakimovski-Leviatan operators of Durrmeyer type involving Appell polynomials
    Gupta, Pooja
    Agrawal, Purshottam Narain
    TURKISH JOURNAL OF MATHEMATICS, 2018, 42 (03) : 1457 - 1470
  • [35] Baskakov-Durrmeyer type operators involving generalized Appell Polynomials
    Neer, Trapti
    Acu, Ana Maria
    Agrawal, P. N.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (06) : 2911 - 2923
  • [36] Approximation by q-parametric operators
    Finta, Zoltan
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2011, 78 (3-4): : 543 - 556
  • [37] Jakimovski-Leviatan operators of Kantorovich type involving multiple Appell polynomials
    Gupta, Pooja
    Acu, Ana Maria
    Agrawal, Purshottam Narain
    GEORGIAN MATHEMATICAL JOURNAL, 2021, 28 (01) : 73 - 82
  • [38] Approximation by Generalised Szász-type Operators based on Appell Polynomials
    Kumar, Ajay
    IRANIAN JOURNAL OF SCIENCE, 2024, : 181 - 189
  • [39] Statistical approximation results for Kantorovich-type operators involving some special polynomials
    Ozarslan, M. Ali
    Duman, Oktay
    Srivastava, H. M.
    MATHEMATICAL AND COMPUTER MODELLING, 2008, 48 (3-4) : 388 - 401
  • [40] Approximation results for the operators involving beta function and the Boas-Buck-Sheffer polynomials
    Gungor, Sule Yuksel
    Cekim, Bayram
    Ozarslan, Mehmet Ali
    FILOMAT, 2024, 38 (01) : 171 - 187