On the Parametric Approximation Results of Phillips Operators Involving the q-Appell Polynomials

被引:0
|
作者
Md. Nasiruzzaman
Khursheed J. Ansari
M. Mursaleen
机构
[1] University of Tabuk,Department of Mathematics, Faculty of Science
[2] King Khalid University,Department of Mathematics, College of Science
[3] China Medical University (Taiwan),Department of Medical Research, China Medical University Hospital
[4] Aligarh Muslim University,Department of Mathematics
关键词
Szász operator; Generating functions; Dunkl analogue; Generalization of exponential function; Modulus of continuity; Weighted modulus of continuity; 41A25; 41A35; 41A36;
D O I
暂无
中图分类号
学科分类号
摘要
The motive of the present paper is to construct q-Phillips operators generated by the parametric extension of exponential function by including the parameter ζ∈[-12,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\zeta \in \big [ -\frac{1}{2}, \infty )$$\end{document}. First we give the basic estimates to obtain their central moments and then study the Korovkin’s-type approximation theorems. Moreover, we investigate local approximation results via Peetre’s K-functional, modulus of continuity and Lipschitz-type approximation.
引用
收藏
页码:251 / 263
页数:12
相关论文
共 50 条
  • [1] On the Parametric Approximation Results of Phillips Operators Involving the q-Appell Polynomials
    Nasiruzzaman, Md
    Ansari, Khursheed J.
    Mursaleen, M.
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2022, 46 (01): : 251 - 263
  • [2] Approximation in quantum calculus of the Phillips operators by using the sequences of q-Appell polynomials
    Nasiruzzaman, Md.
    Dilshad, Mohammad
    Mohiuddine, S. A.
    Albalawi, Bader Mufadhi Eid
    Ajmal, Mohammad Rehan
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2024, 2024 (01):
  • [3] Approximation by q-analogue of Jakimovski–Leviatan operators involving q-Appell polynomials
    M. Mursaleen
    Khursheed J. Ansari
    Md Nasiruzzaman
    Iranian Journal of Science and Technology, Transactions A: Science, 2017, 41 : 891 - 900
  • [4] Approximation by q-analogue of Jakimovski-Leviatan operators involving q-Appell polynomials
    Mursaleen, M.
    Ansari, Khursheed J.
    Nasiruzzaman, Md
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2017, 41 (A4): : 891 - 900
  • [5] SOME CHARACTERIZATIONS OF APPELL AND Q-APPELL POLYNOMIALS
    SRIVASTAVA, HM
    ANNALI DI MATEMATICA PURA ED APPLICATA, 1982, 130 : 321 - 329
  • [6] LINEARIZATION OF PRODUCT OF Q-APPELL POLYNOMIALS
    FLANDERS, H
    AMERICAN MATHEMATICAL MONTHLY, 1980, 87 (05): : 403 - 404
  • [7] Difference equations of q-Appell polynomials
    Mahmudov, Nazim I.
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 245 : 539 - 543
  • [8] Approximation by Parametric Extension of Szasz-Mirakjan-Kantorovich Operators Involving the Appell Polynomials
    Nasiruzzaman, Md.
    Aljohani, A. F.
    JOURNAL OF FUNCTION SPACES, 2020, 2020
  • [9] q-Difference equations for the 2-iterated q-Appell and mixed type q-Appell polynomials
    Srivastava, H. M.
    Khan, Subuhi
    Riyasat, Mumtaz
    ARABIAN JOURNAL OF MATHEMATICS, 2019, 8 (01) : 63 - 77
  • [10] q-Difference equations for the 2-iterated q-Appell and mixed type q-Appell polynomials
    H. M. Srivastava
    Subuhi Khan
    Mumtaz Riyasat
    Arabian Journal of Mathematics, 2019, 8 : 63 - 77