ConvNet frameworks for multi-modal fake news detection

被引:0
|
作者
Chahat Raj
Priyanka Meel
机构
[1] Delhi Technological University,Department of Information Technology
来源
Applied Intelligence | 2021年 / 51卷
关键词
Fake news detection; Multimodal combination; Weighted average fusion; Convolutional neural networks; Deep learning;
D O I
暂无
中图分类号
学科分类号
摘要
An upsurge of false information revolves around the internet. Social media and websites are flooded with unverified news posts. These posts are comprised of text, images, audio, and videos. There is a requirement for a system that detects fake content in multiple data modalities. We have seen a considerable amount of research on classification techniques for textual fake news detection, while frameworks dedicated to visual fake news detection are very few. We explored the state-of-the-art methods using deep networks such as CNNs and RNNs for multi-modal online information credibility analysis. They show rapid improvement in classification tasks without requiring pre-processing. To aid the ongoing research over fake news detection using CNN models, we build textual and visual modules to analyze their performances over multi-modal datasets. We exploit latent features present inside text and images using layers of convolutions. We see how well these convolutional neural networks perform classification when provided with only latent features and analyze what type of images are needed to be fed to perform efficient fake news detection. We propose a multi-modal Coupled ConvNet architecture that fuses both the data modules and efficiently classifies online news depending on its textual and visual content. We thence offer a comparative analysis of the results of all the models utilized over three datasets. The proposed architecture outperforms various state-of-the-art methods for fake news detection with considerably high accuracies.
引用
收藏
页码:8132 / 8148
页数:16
相关论文
共 50 条
  • [31] Multi-Modal Co-Attention Capsule Network for Fake News Detection
    Chunyan Yin
    Yongheng Chen
    Optical Memory and Neural Networks (Information Optics), 2024, 33 (01): : 13 - 27
  • [32] Embracing Domain Differences in Fake News: Cross-domain Fake News Detection using Multi-modal Data
    Silva, Amila
    Luo, Ling
    Karunasekera, Shanika
    Leckie, Christopher
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 557 - 565
  • [33] Multi-Level Multi-Modal Cross-Attention Network for Fake News Detection
    Ying, Long
    Yu, Hui
    Wang, Jinguang
    Ji, Yongze
    Qian, Shengsheng
    IEEE ACCESS, 2021, 9 : 132363 - 132373
  • [34] A Multi-Reading Habits Fusion Adversarial Network for Multi-Modal Fake News Detection
    Wang, Bofan
    Zhang, Shenwu
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2024, 15 (07) : 403 - 413
  • [35] Fake News Detection in Social Media based on Multi-Modal Multi-Task Learning
    Cui, Xinyu
    Li, Yang
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2022, 13 (07) : 912 - 918
  • [36] Fake News Detection Based on BERT Multi-domain and Multi-modal Fusion Network
    Yu, Kai
    Jiao, Shiming
    Ma, Zhilong
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2025, 252
  • [37] Multi-modal Robustness Fake News Detection with Cross-Modal and Propagation Network Contrastive Learning
    Chen, Han
    Wang, Hairong
    Liu, Zhipeng
    Li, Yuhua
    Hu, Yifan
    Zhang, Yujing
    Shu, Kai
    Li, Ruixuan
    Yu, Philip S.
    KNOWLEDGE-BASED SYSTEMS, 2025, 309
  • [38] Multi-modal Fake News Detection Use Event-Categorizing Neural Networks
    Zhao, Buze
    Deng, Hai
    Hao, Jie
    WEB AND BIG DATA, PT III, APWEB-WAIM 2022, 2023, 13423 : 301 - 308
  • [39] Multi-Modal fake news Detection on Social Media with Dual Attention Fusion Networks
    Yang, Haitian
    Zhao, Xuan
    Sun, Degang
    Wang, Yan
    Zhu, He
    Ma, Chao
    Huang, Weiqing
    26TH IEEE SYMPOSIUM ON COMPUTERS AND COMMUNICATIONS (IEEE ISCC 2021), 2021,
  • [40] GraMuFeN: graph-based multi-modal fake news detection in social media
    Kananian, Makan
    Badiei, Fatemeh
    Gh. Ghahramani, S. AmirAli
    SOCIAL NETWORK ANALYSIS AND MINING, 2024, 14 (01)