A posteriori error estimates for non-stationary non-linear convection–diffusion equations

被引:0
|
作者
R. Verfürth
机构
[1] Ruhr-Universität Bochum,Fakultät für Mathematik
来源
Calcolo | 2018年 / 55卷
关键词
A posteriori error estimates; Non-stationary non-linear convection–diffusion equations; Stochastic pdes; 65N30; 65N15; 65J10;
D O I
暂无
中图分类号
学科分类号
摘要
Motivated by stochastic convection–diffusion problems we derive a posteriori error estimates for non-stationary non-linear convection–diffusion equations acting as a deterministic paradigm. The problem considered here neither fits into the standard linear framework due to its non-linearity nor into the standard non-linear framework due to the lacking differentiability of the non-linearity. Particular attention is paid to the interplay of the various parameters controlling the relative sizes of diffusion, convection, reaction and non-linearity (noise).
引用
收藏
相关论文
共 50 条
  • [21] A posteriori error estimates for optimal control problems constrained by convection-diffusion equations
    Fu, Hongfei
    Rui, Hongxing
    Zhou, Zhaojie
    FRONTIERS OF MATHEMATICS IN CHINA, 2016, 11 (01) : 55 - 75
  • [22] A Posteriori Error Estimates for Finite Volume Element Approximations of Convection–Diffusion–Reaction Equations
    Raytcho Lazarov
    Stanimire Tomov
    Computational Geosciences, 2002, 6 : 483 - 503
  • [23] Non-stationary free convection
    Kameneckij, DAF
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES DE L URSS, 1938, 18 : 409 - 412
  • [24] A posteriori error estimates of constrained optimal control problem governed by convection diffusion equations
    Yan, Ningning
    Zhou, Zhaojie
    FRONTIERS OF MATHEMATICS IN CHINA, 2008, 3 (03) : 415 - 442
  • [25] A posteriori error estimates for optimal control problems constrained by convection-diffusion equations
    Hongfei Fu
    Hongxing Rui
    Zhaojie Zhou
    Frontiers of Mathematics in China, 2016, 11 : 55 - 75
  • [26] A posteriori error estimates of constrained optimal control problem governed by convection diffusion equations
    Ningning Yan
    Zhaojie Zhou
    Frontiers of Mathematics in China, 2008, 3 : 415 - 442
  • [27] A posteriori error estimates for subgrid viscosity stabilized approximations of convection-diffusion equations
    Achchab, B.
    El Fatini, M.
    Ern, A.
    Souissi, A.
    APPLIED MATHEMATICS LETTERS, 2009, 22 (09) : 1418 - 1424
  • [28] EMBEDDING OF NON-LINEAR OPERATORS AND A PRIORI ESTIMATES FOR SOLUTIONS OF NON-LINEAR EQUATIONS
    POKHOZHAEV, SI
    DOKLADY AKADEMII NAUK SSSR, 1982, 266 (05): : 1063 - 1066
  • [29] Analysis of non-linear and non-stationary seismic recordings of Mexico city
    Garcia, S. R.
    Romo, M. P.
    Alcantara, L.
    SOIL DYNAMICS AND EARTHQUAKE ENGINEERING, 2019, 127
  • [30] Non-linear feature extraction for robust speech recognition in stationary and non-stationary noise
    Zhu, QF
    Alwan, A
    COMPUTER SPEECH AND LANGUAGE, 2003, 17 (04): : 381 - 402