Exponential Speedup of Fixed-Parameter Algorithms for Classes of Graphs Excluding Single-Crossing Graphs as Minors

被引:0
|
作者
Erik D. Demaine
Mohammadtaghi Hajiaghayi
Dimitrios M. Thilikos
机构
[1] MIT Computer Science and Artificial Intelligence Laboratory,
[2] 32 Vassar Street,undefined
[3] Cambridge,undefined
[4] MA 02139,undefined
[5] Departament de Llenguatges i Sistemes Informatics,undefined
[6] Universitat Politecnica de Catalunya,undefined
[7] Campus Nord – Modul C5,undefined
[8] c/Jordi Girona Salgado 1-3,undefined
[9] E-08034,undefined
[10] Barcelona,undefined
来源
Algorithmica | 2005年 / 41卷
关键词
Subexponential algorithms; Graph minors; Dominating set;
D O I
暂无
中图分类号
学科分类号
摘要
We present a fixed-parameter algorithm that constructively solves the $k$-dominating set problem on any class of graphs excluding a single-crossing graph (a graph that can be drawn in the plane with at most one crossing) as a minor in $O(4^{9.55\sqrt{k}}n^{O(1)})$ time. Examples of such graph classes are the $K_{3,3}$-minor-free graphs and the $K_{5}$-minor-free graphs. As a consequence, we extend our results to several other problems such as vertex cover, edge dominating set, independent set, clique-transversal set, kernels in digraphs, feedback vertex set, and a collection of vertex-removal problems. Our work generalizes and extends the recent results of exponential speedup in designing fixed-parameter algorithms on planar graphs due to Alber et al. to other (nonplanar) classes of graphs.
引用
收藏
页码:245 / 267
页数:22
相关论文
共 37 条