Jackknife empirical likelihood method for copulas

被引:0
|
作者
Liang Peng
Yongcheng Qi
Ingrid Van Keilegom
机构
[1] Georgia Institute of Technology,School of Mathematics
[2] University of Minnesota Duluth,Department of Mathematics and Statistics
[3] Université catholique de Louvain,Institute of Statistics
来源
TEST | 2012年 / 21卷
关键词
Copulas; Empirical likelihood method; Jackknife; 62E20; 62F40; 62G07; 62G30; 62H15;
D O I
暂无
中图分类号
学科分类号
摘要
Copulas are used to depict dependence among several random variables. Both parametric and non-parametric estimation methods have been studied in the literature. Moreover, profile empirical likelihood methods based on either empirical copula estimation or smoothed copula estimation have been proposed to construct confidence intervals of a copula. In this paper, a jackknife empirical likelihood method is proposed to reduce the computation with respect to the existing profile empirical likelihood methods.
引用
收藏
页码:74 / 92
页数:18
相关论文
共 50 条
  • [31] A consistent jackknife empirical likelihood test for distribution functions
    Xiaohui Liu
    Qihua Wang
    Yi Liu
    Annals of the Institute of Statistical Mathematics, 2017, 69 : 249 - 269
  • [32] A consistent jackknife empirical likelihood test for distribution functions
    Liu, Xiaohui
    Wang, Qihua
    Liu, Yi
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2017, 69 (02) : 249 - 269
  • [33] Jackknife empirical likelihood for comparing two Gini indices
    Wang, Dongliang
    Zhao, Yichuan
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2016, 44 (01): : 102 - 119
  • [34] JACKKNIFE EMPIRICAL LIKELIHOOD INTERVALS FOR SPEARMAN'S RHO
    Wang, Ruodu
    Peng, Liang
    NORTH AMERICAN ACTUARIAL JOURNAL, 2011, 15 (04) : 475 - 486
  • [35] Jackknife empirical likelihood for the error variance in linear models
    Lin, Hui-Ling
    Li, Zhouping
    Wang, Dongliang
    Zhao, Yichuan
    JOURNAL OF NONPARAMETRIC STATISTICS, 2017, 29 (02) : 151 - 166
  • [36] Jackknife empirical likelihood for inequality constraints on regular functionals
    Chen, Ruxin
    Tabri, Rami V.
    JOURNAL OF ECONOMETRICS, 2021, 221 (01) : 68 - 77
  • [37] Jackknife empirical likelihood confidence interval for the Gini index
    Wang, Dongliang
    Zhao, Yichuan
    Gilmore, Dirk W.
    STATISTICS & PROBABILITY LETTERS, 2016, 110 : 289 - 295
  • [38] Empirical likelihood based confidence regions for functional of copulas
    Bouzebda, Salim
    Keziou, Amor
    JOURNAL OF NONPARAMETRIC STATISTICS, 2024, 36 (04) : 1192 - 1224
  • [39] Jackknife empirical likelihood confidence intervals for the categorical Gini correlation
    Hewage, Sameera
    Sang, Yongli
    arXiv, 2023,
  • [40] Jackknife empirical likelihood tests for error distributions in regression models
    Feng, Huijun
    Peng, Liang
    JOURNAL OF MULTIVARIATE ANALYSIS, 2012, 112 : 63 - 75