Perturbative reheating and thermalization of pure Yang-Mills plasma

被引:3
|
作者
Mukaida, Kyohei [1 ,2 ]
Yamada, Masaki [3 ,4 ]
机构
[1] KEK, Theory Ctr, IPNS, 1-1 Oho, Tsukuba, Ibaraki 3050801, Japan
[2] Grad Univ Adv Studies SOKENDAI, 1-1 Oho, Tsukuba, Ibaraki 3050801, Japan
[3] Tohoku Univ, Frontier Res Inst Interdisciplinary Sci, 6-3 Azaaoba,Aoba Ku, Sendai 9808578, Japan
[4] Tohoku Univ, Dept Phys, 6-3 Azaaoba Aramaki,Aoba Ku, Sendai 9808578, Japan
来源
JOURNAL OF HIGH ENERGY PHYSICS | 2024年 / 05期
关键词
Early Universe Particle Physics; Quark-Gluon Plasma; Cosmology of Theories BSM; New Gauge Interactions; GRAVITATIONAL-RADIATION; VACUUM; NUCLEOSYNTHESIS; BREMSSTRAHLUNG; COSMOLOGY; SPECTRUM;
D O I
10.1007/JHEP05(2024)174
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We investigate the thermalization of high-energy particles injected from the perturbative decay of inflaton during the pre-thermal phase of reheating in detail. In general, thermalization takes a relatively long time in a low-temperature plasma; therefore, the instantaneous thermalization approximation is not justified, even for the reheating of the Standard Model (SM) sector. We consider a pure Yang-Mills (YM) theory as an approximation of the SM sector or a possible dark sector, considering the Landau-Pomeranchuk-Migdal effect, a quantum interference effect in a finite temperature plasma. We perform the first numerical calculation to solve the time evolution of the system, including the redshift due to the expansion of the Universe, and show the details of the temperature evolution near the maximum and the behavior of the quasi-attractors at later times. The maximal temperature T max and time scale t max are determined quantitatively, such as T max similar or equal to 0.05 x Gamma I M PI 2 / m I 3 2 / 5 m I \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\left({\Gamma}_I{M}_{\textrm{PI}}<^>2/{m}_I<^>3\right)}<^>{2/5}{m}_I $$\end{document} and t max similar or equal to 2 x 103 x Gamma I M PI 2 / m I 3 - 3 / 5 m I - 1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\left({\Gamma}_I{M}_{\textrm{PI}}<^>2/{m}_I<^>3\right)}<^>{-3/5}{m}_I<^>{-1} $$\end{document} in the SM-like system, where m I and Gamma I are the mass and decay rate of inflaton. We also provide a similar formula for pure SU(N) and SO(N) YM theories for general values of N and coupling constant alpha, including T max proportional to alpha 4/5 and t max proportional to N -2 alpha -16/5 behaviors and their numerical coefficients. The thermalization occurs in a finite time scale, resulting in a lower maximal temperature of the Universe after inflation than that under the instantaneous thermalization approximation.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] Generalized gauge transformations: Pure Yang-Mills case
    Gastmans, R
    Wu, TT
    PHYSICAL REVIEW D, 1998, 57 (02): : 1203 - 1224
  • [32] Generalized gauge transformations: Pure Yang-Mills case
    Gastmans, R.
    Tai Tsun Wu
    Physical Review D Particles, Fields, Gravitation and Cosmology, 57 (02):
  • [33] On some aspects of nocommutative pure Yang-Mills theory
    Giller, Stefan
    Gonera, Cezary
    Kosinski, Piotr
    Maslanka, Pawel
    5TH INTERNATIONAL SYMPOSIUM ON QUANTUM THEORY AND SYMMETRIES QTS5, 2008, 128
  • [34] Path integral regularization of pure Yang-Mills theory
    Jacquot, J. L.
    PHYSICAL REVIEW D, 2009, 80 (02):
  • [35] On nonexistence of magnetic charge in pure Yang-Mills theories
    Kovner, A
    Lavelle, MJ
    McMullan, D
    JOURNAL OF HIGH ENERGY PHYSICS, 2002, (12):
  • [36] Pure Yang-Mills Solutions on dS4
    Ivanova, T. A.
    Lechtenfeld, O.
    Popov, A. D.
    PHYSICS OF PARTICLES AND NUCLEI, 2018, 49 (05) : 854 - 859
  • [37] THE REGULARIZED BRST JACOBIAN OF PURE YANG-MILLS THEORY
    DEJONGHE, F
    SIEBELINK, R
    TROOST, W
    VANDOREN, S
    VANNIEUWENHUIZEN, P
    VANPROEYEN, A
    PHYSICS LETTERS B, 1992, 289 (3-4) : 354 - 360
  • [38] The Infrared Behaviour of the Pure Yang-Mills Green Functions
    Boucaud, Ph.
    Leroy, J. P.
    Le Yaouanc, A.
    Micheli, J.
    Pene, O.
    Rodriguez-Quintero, J.
    FEW-BODY SYSTEMS, 2012, 53 (3-4) : 387 - 436
  • [39] TRANSVERSE PURE GAUGE FIELDS IN YANG-MILLS THEORY
    SCHAPOSNIK, FA
    SOLOMIN, JE
    PHYSICAL REVIEW D, 1978, 18 (12): : 4812 - 4814
  • [40] Longitudinal oscillations in a classical Yang-Mills plasma
    F. Zonca
    R. Sisto
    The European Physical Journal D, 2000, 8 : 131 - 143