Existence of one-signed solutions of nonlinear four-point boundary value problems

被引:1
|
作者
Ruyun Ma
Ruipeng Chen
机构
[1] Northwest Normal University,Department of Mathematics
来源
关键词
four-point boundary value problem; one-signed solution; bifurcation method; 34B15;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we are concerned with the existence of one-signed solutions of four-point boundary value problems \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ - u'' + Mu = rg(t)f(u),u(0) = u(\varepsilon ),u(1) = u(1 - \varepsilon ) $$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u'' + Mu = rg(t)f(u),u(0) = u(\varepsilon ),u(1) = u(1 - \varepsilon ) $$\end{document}, where ε ∈ (0, 1/2), M ∈ (0,∞) is a constant and r > 0 is a parameter, g ∈ C([0, 1], (0,+∞)), f ∈ C(ℝ,ℝ) with sf(s) > 0 for s ≠ 0. The proof of the main results is based upon bifurcation techniques.
引用
收藏
页码:593 / 612
页数:19
相关论文
共 50 条
  • [31] POSITIVE SOLUTIONS FOR SECOND-ORDER FOUR-POINT BOUNDARY VALUE PROBLEMS AT RESONANCE
    Shen, Chunfang
    Yang, Liu
    Liang, Yan
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2011, 38 (01) : 1 - 15
  • [32] EXISTENCE OF POSITIVE SOLUTIONS FOR SINGULAR FOUR-POINT BOUNDARY VALUE PROBLEM WITH A p-LAPLACIAN
    Miao, Chunmei
    Zhao, Junfang
    Ge, Weigao
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2009, 59 (04) : 957 - 973
  • [33] Existence of Solutions for Fourth-Order Four-Point Boundary Value Problem on Time Scales
    Dandan Yang
    Gang Li
    Chuanzhi Bai
    Boundary Value Problems, 2009
  • [34] Existence of Solutions for Fourth-Order Four-Point Boundary Value Problem on Time Scales
    Yang, Dandan
    Li, Gang
    Bai, Chuanzhi
    BOUNDARY VALUE PROBLEMS, 2009,
  • [35] Positive solutions of a four-point fractional boundary value problem
    Jia, Hongyan
    IAENG International Journal of Applied Mathematics, 2019, 49 (02)
  • [36] Existence of multiple solutions for nonlinear multi-point boundary value problems
    Li, Hongyu
    Chen, Yang
    Zhang, Junting
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [37] Existence of nontrivial solutions for discrete nonlinear two point boundary value problems
    Jiang, Liqun
    Zhou, Zhan
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 180 (01) : 318 - 329
  • [38] EXISTENCE AND APPROXIMATIONS OF SOLUTIONS OF M-POINT NONLINEAR BOUNDARY VALUE PROBLEMS
    Rahmat, Ali Khan
    APLIMAT 2007 - 6TH INTERNATIONAL CONFERENCE, PT II, 2007, : 289 - 297
  • [39] Existence of multiple solutions for nonlinear multi-point boundary value problems
    Hongyu Li
    Yang Chen
    Junting Zhang
    Advances in Difference Equations, 2020
  • [40] Existence of solutions of nonlinear m-point boundary-value problems
    Ma, RY
    Castaneda, N
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 256 (02) : 556 - 567