In this paper, we are concerned with the existence of one-signed solutions of four-point boundary value problems \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ - u'' + Mu = rg(t)f(u),u(0) = u(\varepsilon ),u(1) = u(1 - \varepsilon )
$$\end{document} and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$u'' + Mu = rg(t)f(u),u(0) = u(\varepsilon ),u(1) = u(1 - \varepsilon )
$$\end{document}, where ε ∈ (0, 1/2), M ∈ (0,∞) is a constant and r > 0 is a parameter, g ∈ C([0, 1], (0,+∞)), f ∈ C(ℝ,ℝ) with sf(s) > 0 for s ≠ 0. The proof of the main results is based upon bifurcation techniques.