Numerical properties of equations involving high-order derivatives of pressure with respect to volume

被引:0
|
作者
Claude F. Leibovici
Dan Vladimir Nichita
机构
[1] CFL Consultant,CNRS UMR 5150, Laboratoire des Fluides Complexes
[2] Université de Pau et des Pays de l’Adour,undefined
来源
Chemical Papers | 2010年 / 64卷
关键词
cubic equations of state; high order derivatives of pressure with respect to volume; geometric locus; nodal curves;
D O I
暂无
中图分类号
学科分类号
摘要
This paper presents some unexpected features related to the solution of equations containing a high-order derivative of pressure with respect to volume equated to zero. For pure components, such equations define, in the pressure-temperature plane, nodal curves similar in shape to mixture spinodal curves. The analysis was made for a general form of two-parameter cubic equations of state and various numerical aspects for the Redlich-Kwong equation of state are exemplified.
引用
收藏
页码:106 / 113
页数:7
相关论文
共 50 条
  • [41] High-order approximation equations for the primitive equations of the atmosphere
    Medjo, TT
    Temam, R
    Wang, S
    JOURNAL OF ENGINEERING MATHEMATICS, 1997, 32 (2-3) : 237 - 256
  • [42] High-Order Approximation Equations for the Primitive Equations of the Atmosphere
    T. Tachim Medjo
    R. Temam
    S. Wang
    Journal of Engineering Mathematics, 1997, 32 : 237 - 256
  • [43] NUMERICAL DIFFERENTIATION BY HIGH-ORDER INTERPOLATION
    HOFFMAN, P
    REDDY, KC
    SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1987, 8 (06): : 979 - 987
  • [44] Properties of High-Order Finite Difference Schemes and Idealized Numerical Testing
    Daosheng XU
    Dehui CHEN
    Kaixin WU
    AdvancesinAtmosphericSciences, 2021, 38 (04) : 615 - 626
  • [45] High-order finite-volume methods for the shallow-water equations on the sphere
    Ullrich, Paul A.
    Jablonowski, Christiane
    van Leer, Bram
    JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (17) : 6104 - 6134
  • [46] Properties of High-Order Finite Difference Schemes and Idealized Numerical Testing
    Daosheng Xu
    Dehui Chen
    Kaixin Wu
    Advances in Atmospheric Sciences, 2021, 38 : 615 - 626
  • [47] High-order well-balanced finite volume schemes for the Euler equations with gravitation
    Grosheintz-Laval, L.
    Kappeli, R.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 378 : 324 - 343
  • [48] Properties of High-Order Finite Difference Schemes and Idealized Numerical Testing
    Xu, Daosheng
    Chen, Dehui
    Wu, Kaixin
    ADVANCES IN ATMOSPHERIC SCIENCES, 2021, 38 (04) : 615 - 626
  • [49] High-order finite volume schemes for shallow water equations with topography and dry areas
    Gallardo, Jose M.
    Castro, Manuel J.
    Pares, Carlos
    HYPERBOLIC PROBLEMS: THEORY, NUMERICS AND APPLICATIONS, PART 2, 2009, 67 : 585 - 594
  • [50] High-order finite volume WENO schemes for the shallow water equations with dry states
    Xing, Yulong
    Shu, Chi-Wang
    ADVANCES IN WATER RESOURCES, 2011, 34 (08) : 1026 - 1038