Evaluation of CNV detection tools for NGS panel data in genetic diagnostics

被引:0
|
作者
José Marcos Moreno-Cabrera
Jesús del Valle
Elisabeth Castellanos
Lidia Feliubadaló
Marta Pineda
Joan Brunet
Eduard Serra
Gabriel Capellà
Conxi Lázaro
Bernat Gel
机构
[1] Campus Can Ruti,Hereditary Cancer Group, Program for Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute (PMPPC
[2] L’Hospitalet de Llobregat,IGTP)
[3] Instituto de Salud Carlos III,Hereditary Cancer Program, Joint Program on Hereditary Cancer, Catalan Institute of Oncology, Institut d’Investigació Biomèdica de Bellvitge—IDIBELL
[4] Catalan Institute of Oncology,Centro de Investigación Biomédica en Red Cáncer (CIBERONC)
[5] IDIBGi,Hereditary Cancer Program
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Although germline copy-number variants (CNVs) are the genetic cause of multiple hereditary diseases, detecting them from targeted next-generation sequencing data (NGS) remains a challenge. Existing tools perform well for large CNVs but struggle with single and multi-exon alterations. The aim of this work is to evaluate CNV calling tools working on gene panel NGS data and their suitability as a screening step before orthogonal confirmation in genetic diagnostics strategies. Five tools (DECoN, CoNVaDING, panelcn.MOPS, ExomeDepth, and CODEX2) were tested against four genetic diagnostics datasets (two in-house and two external) for a total of 495 samples with 231 single and multi-exon validated CNVs. The evaluation was performed using the default and sensitivity-optimized parameters. Results showed that most tools were highly sensitive and specific, but the performance was dataset dependant. When evaluating them in our diagnostics scenario, DECoN and panelcn.MOPS detected all CNVs with the exception of one mosaic CNV missed by DECoN. However, DECoN outperformed panelcn.MOPS specificity achieving values greater than 0.90 when using the optimized parameters. In our in-house datasets, DECoN and panelcn.MOPS showed the highest performance for CNV screening before orthogonal confirmation. Benchmarking and optimization code is freely available at https://github.com/TranslationalBioinformaticsIGTP/CNVbenchmarkeR.
引用
收藏
页码:1645 / 1655
页数:10
相关论文
共 50 条
  • [41] Evaluation of Copy Number Variation (CNV) detection methods in whole exome sequencing data
    Zhang, Peng
    Ling, Hua
    Pugh, Elizabeth
    Hetrick, Kurt
    Witmer, Dane
    Sobreira, Nara
    Valle, David
    Doheny, Kimberly
    GENETIC EPIDEMIOLOGY, 2015, 39 (07) : 597 - 597
  • [42] Accuracy of CNV Detection from GWAS Data
    Zhang, Dandan
    Qian, Yudong
    Akula, Nirmala
    Alliey-Rodriguez, Ney
    Tang, Jinsong
    Gershon, Elliot S.
    Liu, Chunyu
    PLOS ONE, 2011, 6 (01):
  • [43] NGS Panel for the Detection of Monogenic SLE in Children: Initial Results
    Belot, Alexandre
    Rice, Gillian
    Mathieu, Anne-Laure
    Bader-Meunier, Brigitte
    Walzer, Thierry
    Briggs, Tracy A.
    O'Sullivan, James
    Wiliams, Simon
    Beresford, Michael W.
    Crow, Yanick
    ARTHRITIS & RHEUMATOLOGY, 2015, 67
  • [44] NGS-based CNV detection sensitivity is dependent upon nucleic acid input quality
    Haimes, Josh
    Covino, James
    Namoj, Namitha
    Baravik, Elina
    Johnson, Laura
    Stahl, Joshua
    Culver, Brady P.
    Kudlow, Brian
    CANCER RESEARCH, 2016, 76
  • [45] CNV-LDC: An Optimized CNV Detection Method for Low Depth of Coverage Data
    Salmi, Ayyoub
    El Jadid, Sara
    Jamail, Ismail
    Bensellak, Taoufik
    Philippe, Romain
    Blanquet, Veronique
    Moussa, Ahmed
    PROCEEDINGS OF THE 10TH INTERNATIONAL JOINT CONFERENCE ON BIOMEDICAL ENGINEERING SYSTEMS AND TECHNOLOGIES, VOL 3: BIOINFORMATICS, 2017, : 37 - 42
  • [46] The evaluation of a new NGS system (GeneReader NGS System) in clinical use of cancer diagnostics: The first report
    Bisgin, A.
    Sonmezler, O.
    Boga, I.
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2018, 26 : 660 - 660
  • [47] Benchmarking germline CNV calling tools from exome sequencing data
    Gordeeva, Veronika
    Sharova, Elena
    Babalyan, Konstantin
    Sultanov, Rinat
    Govorun, Vadim M.
    Arapidi, Georgij
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [48] Benchmarking germline CNV calling tools from exome sequencing data
    Veronika Gordeeva
    Elena Sharova
    Konstantin Babalyan
    Rinat Sultanov
    Vadim M. Govorun
    Georgij Arapidi
    Scientific Reports, 11
  • [49] In-Depth Overview of CNV Prediction Tools for Exome Sequencing Data
    Iakovishina, D.
    Vachnadze, A.
    Afanasyev, A.
    JOURNAL OF MOLECULAR DIAGNOSTICS, 2015, 17 (06): : 805 - 805
  • [50] PipeMAGI: an integrated and validated workflow for analysis of NGS data for clinical diagnostics
    Marceddu, G.
    Dallavilla, T.
    Guerri, G.
    Manara, E.
    Chiurazzi, P.
    Bertelli, M.
    EUROPEAN REVIEW FOR MEDICAL AND PHARMACOLOGICAL SCIENCES, 2019, 23 (15) : 6753 - 6765