Hardy Type Spaces and Bergman Type Classes of Complex-Valued Harmonic Functions

被引:0
|
作者
Shaolin Chen
Hidetaka Hamada
机构
[1] Hengyang Normal University,College of Mathematics and Statistics
[2] Hunan Provincial Key Laboratory of Intelligent Information Processing and Application,Faculty of Science and Engineering
[3] Kyushu Sangyo University,undefined
关键词
Bergman type class; Complex-valued harmonic function; Elliptic mapping; Hardy type space; Primary 30H10; 30H20; 31A05; Secondary 30C62;
D O I
暂无
中图分类号
学科分类号
摘要
The main purpose of this paper is to discuss Hardy type spaces and Bergman type classes of complex-valued harmonic functions. We first establish a Hardy-Littlewood type theorem on complex-valued harmonic functions. Next, the relationships between the Bergman type classes and the Hardy type spaces of complex-valued harmonic functions or the relationships between the Bergman type classes and the Hardy type spaces of harmonic (K,K′)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(K,K')$$\end{document}-elliptic mappings will be discussed, where K≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K\ge 1$$\end{document} and K′≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K'\ge 0$$\end{document} are constants.
引用
收藏
相关论文
共 50 条