The Pontryagin maximum principle and optimal economic growth problems

被引:0
|
作者
Aseev S.M. [1 ,2 ]
Kryazhimskii A.V. [1 ,2 ]
机构
[1] Steklov Institute of Mathematics, Russian Academy of Sciences, Moscow, 119991
[2] International Institute for Applied Systems Analysis, Laxenburg, A-2361
基金
俄罗斯基础研究基金会;
关键词
Maximum Principle; Hamiltonian System; Optimal Control Problem; STEKLOV Institute; Curve Versus;
D O I
10.1134/S0081543807020010
中图分类号
学科分类号
摘要
[No abstract available]
引用
收藏
页码:1 / 255
页数:254
相关论文
共 50 条
  • [41] Pontryagin's maximum principle for optimal control of an extrusion process
    Ma, Cheng-Cheng
    Sun, Bing
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2021, 52 (15) : 3226 - 3240
  • [42] Pontryagin's Principle for Time-Optimal Problems
    J. P. Raymond
    H. Zidani
    Journal of Optimization Theory and Applications, 1999, 101 : 375 - 402
  • [43] On the Pontryagin Maximum Principle for Systems with Delays. Economic Applications
    Kim, A. V.
    Kormyshev, V. M.
    Kwon, O. B.
    Mukhametshin, E. R.
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2017 (ICCMSE-2017), 2017, 1906
  • [44] Pontryagin's principle for time-optimal problems
    Raymond, JP
    Zidani, H
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1999, 101 (02) : 375 - 402
  • [45] A Proof of the Pontryagin Maximum Principle for Initial-Value Problems
    Hartberger, R. J.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1973, 11 (02) : 139 - 145
  • [46] Pontryagin's principle for time-optimal problems
    Université Paul Sabatier, UMR CNRS MIP, Toulouse, France
    不详
    J. Optim. Theory Appl., 2 (375-402):
  • [47] The Pontryagin Maximum Principle and Sufficient Optimality Conditions for Nonlinear Problems
    A. V. Arutyunov
    Differential Equations, 2003, 39 : 1671 - 1679
  • [48] The hybrid maximum principle is a consequence of pontryagin maximum principle
    Dmitruk, A. V.
    Kaganovich, A. M.
    SYSTEMS & CONTROL LETTERS, 2008, 57 (11) : 964 - 970
  • [49] Application of Pontryagin's principle of maximum to the inverse problems of scattering
    Batrakov, DO
    Tarasov, MM
    MMET 2000: INTERNATIONAL CONFERENCE ON MATHEMATICAL METHODS IN ELECTROMAGNETIC THEORY, VOLS 1 AND 2, CONFERENCE PROCEEDINGS, 2000, : 621 - 623
  • [50] Pontryagin's maximum principle for constrained impulsive control problems
    Arutyunov, A. V.
    Karamzin, D. Yu.
    Pereira, F.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (03) : 1045 - 1057