Eigenvalue Counting Function for Robin Laplacians on Conical Domains

被引:0
|
作者
Vincent Bruneau
Konstantin Pankrashkin
Nicolas Popoff
机构
[1] Université de Bordeaux,Institut mathématique de Bordeaux
[2] Université Paris-Saclay,Laboratoire de Mathématiques d’Orsay, Univ. Paris
来源
关键词
Laplacian; Robin boundary condition; Eigenvalue; Spectrum; 35P15; 35J05; 49R05; 58C40;
D O I
暂无
中图分类号
学科分类号
摘要
We study the discrete spectrum of the Robin Laplacian QαΩ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q^{\Omega }_\alpha $$\end{document} in L2(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2(\Omega )$$\end{document}, u↦-Δu,Dnu=αuon∂Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u\mapsto -\Delta u, \quad D_n u=\alpha u \text { on }\partial \Omega $$\end{document}, where Dn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_n$$\end{document} is the outer unit normal derivative and Ω⊂R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega \subset {\mathbb {R}}^{3}$$\end{document} is a conical domain with a regular cross-section Θ⊂S2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Theta \subset {\mathbb {S}}^2$$\end{document}, n is the outer unit normal, and α>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha >0$$\end{document} is a fixed constant. It is known from previous papers that the bottom of the essential spectrum of QαΩ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q^{\Omega }_\alpha $$\end{document} is -α2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-\alpha ^2$$\end{document} and that the finiteness of the discrete spectrum depends on the geometry of the cross-section. We show that the accumulation of the discrete spectrum of QαΩ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q^\Omega _\alpha $$\end{document} is determined by the discrete spectrum of an effective Hamiltonian defined on the boundary and far from the origin. By studying this model operator, we prove that the number of eigenvalues of QαΩ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q^{\Omega }_\alpha $$\end{document} in (-∞,-α2-λ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(-\infty ,-\alpha ^2-\lambda )$$\end{document}, with λ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda >0$$\end{document}, behaves for λ→0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda \rightarrow 0$$\end{document} as α28πλ∫∂Θκ+(s)2ds+o1λ,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \dfrac{\alpha ^2}{8\pi \lambda } \int _{\partial \Theta } \kappa _+(s)^2\mathrm {d}s +o\left( \frac{1}{\lambda }\right) , \end{aligned}$$\end{document}where κ+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa _+$$\end{document} is the positive part of the geodesic curvature of the cross-section boundary.
引用
收藏
页码:123 / 151
页数:28
相关论文
共 50 条
  • [31] On the asymptotics of the eigenvalue counting function for random recursive Sierpinski gaskets
    Hambly, BM
    PROBABILITY THEORY AND RELATED FIELDS, 2000, 117 (02) : 221 - 247
  • [32] On the asymptotics of a Robin eigenvalue problem
    Cakoni, Fioralba
    Chaulet, Nicolas
    Haddar, Houssem
    COMPTES RENDUS MATHEMATIQUE, 2013, 351 (13-14) : 517 - 521
  • [33] Operator Theoretic Methods for the Eigenvalue Counting Function in Spectral Gaps
    Alexander Pushnitski
    Annales Henri Poincaré, 2009, 10 : 793 - 822
  • [34] On the asymptotics of the eigenvalue counting function for random recursive Sierpinski gaskets
    B. M. Hambly
    Probability Theory and Related Fields, 2000, 117 : 221 - 247
  • [35] On the second Robin eigenvalue of the Laplacian
    Xiaolong Li
    Kui Wang
    Haotian Wu
    Calculus of Variations and Partial Differential Equations, 2023, 62
  • [36] On the second Robin eigenvalue of the Laplacian
    Li, Xiaolong
    Wang, Kui
    Wu, Haotian
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2023, 62 (09)
  • [37] Semiclassical Estimates for Eigenvalue Means of Laplacians on Spheres
    Buoso, Davide
    Luzzini, Paolo
    Provenzano, Luigi
    Stubbe, Joachim
    JOURNAL OF GEOMETRIC ANALYSIS, 2023, 33 (09)
  • [38] Semiclassical Estimates for Eigenvalue Means of Laplacians on Spheres
    Davide Buoso
    Paolo Luzzini
    Luigi Provenzano
    Joachim Stubbe
    The Journal of Geometric Analysis, 2023, 33
  • [39] Eigenvalue problems for perturbed p-Laplacians
    Hasanov, M.
    ICMS: INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCE, 2010, 1309 : 400 - 410
  • [40] On the isoperimetric problem for the higher eigenvalues of the Robin and Wentzell Laplacians
    J. B. Kennedy
    Zeitschrift für angewandte Mathematik und Physik, 2010, 61 : 781 - 792