Strong Stability Preserving IMEX Methods for Partitioned Systems of Differential Equations

被引:0
|
作者
Giuseppe Izzo
Zdzisław Jackiewicz
机构
[1] Università degli Studi di Napoli Federico II,Member of the INdAM Research group GNCS, Dipartimento di Matematica e Applicazioni “R.Caccioppoli”
[2] Arizona State University,School of Mathematical and Statistical Sciences
[3] AGH University of Science and Technology,Faculty of Applied Mathematics
来源
Communications on Applied Mathematics and Computation | 2021年 / 3卷
关键词
Partitioned systems of differential equations; SSP property; IMEX general linear methods; Construction of highly stable methods; 65L05;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate strong stability preserving (SSP) implicit-explicit (IMEX) methods for partitioned systems of differential equations with stiff and nonstiff subsystems. Conditions for order p and stage order q=p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q=p$$\end{document} are derived, and characterization of SSP IMEX methods is provided following the recent work by Spijker. Stability properties of these methods with respect to the decoupled linear system with a complex parameter, and a coupled linear system with real parameters are also investigated. Examples of methods up to the order p=4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p=4$$\end{document} and stage order q=p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q=p$$\end{document} are provided. Numerical examples on six partitioned test systems confirm that the derived methods achieve the expected order of convergence for large range of stepsizes of integration, and they are also suitable for preserving the accuracy in the stiff limit or preserving the positivity of the numerical solution for large stepsizes.
引用
收藏
页码:719 / 758
页数:39
相关论文
共 50 条
  • [41] Representations of Runge-Kutta methods and strong stability preserving methods
    Higueras, I
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 43 (03) : 924 - 948
  • [42] The stability of the θ-methods for delay differential equations
    Zhao, JJ
    Liu, MZ
    Qiu, SS
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 1999, 17 (04) : 441 - 448
  • [43] Adaptive energy preserving methods for partial differential equations
    Eidnes, Solve
    Owren, Brynjulf
    Ringholm, Torbjorn
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2018, 44 (03) : 815 - 839
  • [44] Adaptive energy preserving methods for partial differential equations
    Sølve Eidnes
    Brynjulf Owren
    Torbjørn Ringholm
    Advances in Computational Mathematics, 2018, 44 : 815 - 839
  • [45] Partitioned and Implicit–Explicit General Linear Methods for Ordinary Differential Equations
    Hong Zhang
    Adrian Sandu
    Sebastien Blaise
    Journal of Scientific Computing, 2014, 61 : 119 - 144
  • [46] Explicit strong stability preserving second derivative multistep methods for the Euler and Navier-Stokes equations
    Qin, Xueyu
    Yu, Jian
    Jiang, Zhenhua
    Huang, Lintao
    Yan, Chao
    COMPUTERS & FLUIDS, 2024, 268
  • [47] Positivity-preserving methods for ordinary differential equations
    Blanes, Sergio
    Iserles, Arieh
    Macnamara, Shev
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2022, 56 (06) : 1843 - 1870
  • [48] ACCURATE STATIONARY DENSITIES WITH PARTITIONED NUMERICAL METHODS FOR STOCHASTIC DIFFERENTIAL EQUATIONS
    Burrage, Kevin
    Lythe, Grant
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (03) : 1601 - 1618
  • [49] High order asymptotically strong-stability-preserving methods for hyperbolic systems with stiff relaxation
    Pareschi, L
    Russo, G
    HYPERBOLIC PROBLEMS: THEORY, NUMERICS, APPLICATIONS, 2003, : 241 - 251
  • [50] Strong stability preserving multiderivative time marching methods for stiff reaction-diffusion systems
    Jaglan, Jyoti
    Singh, Ankit
    Maurya, Vikas
    Yadav, Vivek S.
    Rajpoot, Manoj K.
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2024, 225 : 267 - 282