Existence in the nonlinear Schrödinger equation with bounded magnetic field

被引:0
|
作者
Ian Schindler
Cyril Tintarev
机构
[1] Université Toulouse I Capitole,Institut de Mathématiques de Toulouse and TSE
关键词
Schrödinger operator; Magnetic field; Ground state; Concentration compactness; Profile decomposition; Critical points; 35Q40; 35Q60; 35J20; 35J61; 46B50;
D O I
暂无
中图分类号
学科分类号
摘要
The paper studies existence of ground states for the nonlinear Schrödinger equation 0.1-(∇+iA(x))2u+V(x)u=|u|p-1u,2<p<2∗,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} -(\nabla + {\mathbf {i}}A(x))^2u+V(x)u=|u|^{p-1}u ,\quad 2<p<2^*, \end{aligned}$$\end{document}with a general external magnetic field. In particular, no lattice periodicity or symmetry of the magnetic field, or presence of external electric field is required.
引用
收藏
相关论文
共 50 条
  • [21] Existence and concentration of ground states of coupled nonlinear Schrödinger equations with bounded potentials
    Gongming Wei
    Chinese Annals of Mathematics, Series B, 2008, 29 : 247 - 264
  • [22] Existence and Concentration of Ground States of Coupled Nonlinear Schr■dinger Equations with Bounded Potentials
    Gongming WEI~* College of Science
    Chinese Annals of Mathematics, 2008, (03) : 247 - 264
  • [23] Derivation of Nonlinear Schrödinger Equation
    Xiang-Yao Wu
    Bai-Jun Zhang
    Xiao-Jing Liu
    Li Xiao
    Yi-Heng Wu
    Yan Wang
    Qing-Cai Wang
    Shuang Cheng
    International Journal of Theoretical Physics, 2010, 49 : 2437 - 2445
  • [24] Existence time for the semilinear Schrödinger equation
    Wei Mingjun
    Applied Mathematics-A Journal of Chinese Universities, 2003, 18 (1) : 30 - 34
  • [25] Fractional nonlinear Schrödinger equation
    Jesus A. Mendez-Navarro
    Pavel I. Naumkin
    Isahi Sánchez-Suárez
    Zeitschrift für angewandte Mathematik und Physik, 2019, 70
  • [26] Collapse in the nonlinear Schrödinger equation
    Yu. N. Ovchinnikov
    I. M. Sigal
    Journal of Experimental and Theoretical Physics, 1999, 89 : 35 - 40
  • [27] Eigenvalues of the nonlinear Schrödinger equation
    S. Geltman
    The European Physical Journal D, 2012, 66
  • [28] Sharp criterion of global existence for nonlinear Schrödinger equation with a harmonic potential
    Ji Shu
    Jian Zhang
    Acta Mathematica Sinica, English Series, 2009, 25
  • [29] Existence of a ground state and scattering for a nonlinear Schrödinger equation with critical growth
    Takafumi Akahori
    Slim Ibrahim
    Hiroaki Kikuchi
    Hayato Nawa
    Selecta Mathematica, 2013, 19 : 545 - 609
  • [30] Existence of solitary waves for the discrete Schrödinger equation coupled to a nonlinear oscillator
    E. A. Kopylova
    Russian Journal of Mathematical Physics, 2008, 15 : 487 - 492