Clinical translation of RNAi-based treatments for respiratory diseases

被引:0
|
作者
Borja Ballarín-González
Troels Bo Thomsen
Kenneth Alan Howard
机构
[1] University of Aarhus,Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics
来源
Drug Delivery and Translational Research | 2013年 / 3卷
关键词
RNAi; siRNA; Respiratory diseases; Nanoparticles; Mucosal; Clinical trials; RSV;
D O I
暂无
中图分类号
学科分类号
摘要
The ability to harness the RNA interference (RNAi) mechanism as a potential potent therapeutic has attracted great interest from academia and industry. Numerous preclinical and recent clinical trials have demonstrated the effectiveness of RNAi triggers such as synthetic small interfering RNA (siRNA). Chemical modification and delivery technologies can be utilized to avoid immune stimulation and improve the bioactivity and pharmacokinetics. Local application to the respiratory epithelia allows direct access to the site of respiratory pathogens that include influenza and respiratory syncytial virus (RSV). This review outlines the essential steps required for the clinical translation of RNAi-based respiratory therapies including disease and RNA target selection, siRNA design, respiratory barriers, and delivery solutions. Attention is given to antiviral therapies and preclinical evaluation with focus on the current status of anti-RSV clinical trials.
引用
收藏
页码:84 / 99
页数:15
相关论文
共 50 条
  • [31] Current scenario of RNAi-based hemipteran control
    Jain, Ritesh G.
    Robinson, Karl E.
    Asgari, Sassan
    Mitter, Neena
    PEST MANAGEMENT SCIENCE, 2021, 77 (05) : 2188 - 2196
  • [32] RNAi-based bioinsecticide for Aedes mosquito control
    Lopez, Sheila Barbara G.
    Guimaraes-Ribeiro, Victor
    Rodriguez, Joao Victor G.
    Dorand, Fernando A. P. S.
    Salles, Tiago S.
    Sa-Guimaraes, Thayane E.
    Alvarenga, Evelyn S. L.
    Melo, Ana Claudia A.
    Almeida, Rodrigo, V
    Moreira, Monica F.
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [33] Dissection of RNAi-based antiviral immunity in plants
    Yang, Zhirui
    Li, Yi
    CURRENT OPINION IN VIROLOGY, 2018, 32 : 88 - 99
  • [34] Study on RNAi-based herbicide for Mikania micrantha
    Mai, Jiantao
    Liao, Lingling
    Ling, Rongsong
    Guo, Xiaolong
    Lin, Jingying
    Mo, Beixin
    Chen, Weizhao
    Yu, Yu
    SYNTHETIC AND SYSTEMS BIOTECHNOLOGY, 2021, 6 (04) : 437 - 445
  • [35] Comparing CRISPR and RNAi-based screening technologies
    Benjamin E Housden
    Norbert Perrimon
    Nature Biotechnology, 2016, 34 : 621 - 623
  • [36] RNAi-based therapeutic strategies for metabolic disease
    Michael P. Czech
    Myriam Aouadi
    Gregory J. Tesz
    Nature Reviews Endocrinology, 2011, 7 : 473 - 484
  • [37] Affinity approaches in RNAi-based therapeutics purification
    Pereira, Patricia
    Queiroz, Joao A.
    Figueiras, Ana
    Sousa, Fani
    JOURNAL OF CHROMATOGRAPHY B-ANALYTICAL TECHNOLOGIES IN THE BIOMEDICAL AND LIFE SCIENCES, 2016, 1021 : 45 - 56
  • [38] RNAi-based nanomedicines for targeted personalized therapy
    Daka, Ala
    Peer, Dan
    ADVANCED DRUG DELIVERY REVIEWS, 2012, 64 (13) : 1508 - 1521
  • [39] RNAi-based bioinsecticide for Aedes mosquito control
    Sheila Barbara G. Lopez
    Victor Guimarães-Ribeiro
    João Victor G. Rodriguez
    Fernando A. P. S. Dorand
    Tiago S. Salles
    Thayane E. Sá-Guimarães
    Evelyn S. L. Alvarenga
    Ana Claudia A. Melo
    Rodrigo V. Almeida
    Monica F. Moreira
    Scientific Reports, 9
  • [40] Delivery of RNAi-Based Therapeutics for Bone Regeneration
    Dominic W. Malcolm
    Yuchen Wang
    Clyde Overby
    Maureen Newman
    Danielle S. W. Benoit
    Current Osteoporosis Reports, 2020, 18 : 312 - 324