Einstein–Cartan–Dirac gravity with U(1) symmetry breaking

被引:0
|
作者
Francisco Cabral
Francisco S. N. Lobo
Diego Rubiera-Garcia
机构
[1] Faculdade de Ciências da Universidade de Lisboa,Instituto de Astrofísica e Ciências do Espaço
[2] Universidad Complutense de Madrid,Departamento de Física Teórica and IPARCOS
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Einstein–Cartan theory is an extension of the standard formulation of General Relativity where torsion (the antisymmetric part of the affine connection) is non-vanishing. Just as the space-time metric is sourced by the stress-energy tensor of the matter fields, torsion is sourced via the spin density tensor, whose physical effects become relevant at very high spin densities. In this work we introduce an extension of the Einstein–Cartan–Dirac theory with an electromagnetic (Maxwell) contribution minimally coupled to torsion. This contribution breaks the U(1) gauge symmetry, which is suggested by the possibility of a torsion-induced phase transition in the early Universe, yielding new physics in extreme (spin) density regimes. We obtain the generalized gravitational, electromagnetic and fermionic field equations for this theory, estimate the strength of the corrections, and discuss the corresponding phenomenology. In particular, we briefly address some astrophysical considerations regarding the relevance of the effects which might take place inside ultra-dense neutron stars with strong magnetic fields (magnetars).
引用
收藏
相关论文
共 50 条
  • [21] Anomalous U(1)A and electroweak symmetry breaking
    Gogoladze, I
    Tsulaia, M
    MODERN PHYSICS LETTERS A, 2001, 16 (13) : 835 - 844
  • [22] Bosonic (p-1)-forms in Einstein-Cartan theory of gravity
    Alfaro, Jorge
    Simon Riquelme, M.
    PHYSICAL REVIEW D, 2014, 90 (10):
  • [23] Dirac equation and optical scalars in the Einstein-Cartan theory
    Timofeev, Vladimir
    PROCEEDINGS OF THE 9TH ALEXANDER FRIEDMANN INTERNATIONAL SEMINAR ON GRAVITATION AND COSMOLOGY AND 3RD SATELLITE SYMPOSIUM ON THE CASIMIR EFFECT, 2016, 41
  • [24] MASSIVE GHOST DIRAC FIELDS IN EINSTEIN-CARTAN-THEORY
    DIMAKIS, A
    MULLERHOISSEN, F
    PHYSICS LETTERS A, 1982, 92 (09) : 431 - 432
  • [25] RECENT ADVANCES IN EINSTEIN-CARTAN THEORY OF GRAVITY
    TRAUTMAN, A
    ANNALS OF THE NEW YORK ACADEMY OF SCIENCES, 1975, 262 (OCT15) : 241 - 245
  • [26] Starobinsky inflation and beyond in Einstein-Cartan gravity
    He, Minxi
    Hong, Muzi
    Mukaida, Kyohei
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2024, (05): : 1 - 25
  • [27] Einstein-Cartan gravity with Holst term and fermions
    Kazmierczak, Marcin
    PHYSICAL REVIEW D, 2009, 79 (06):
  • [28] High energy scattering in Einstein-Cartan gravity
    Bondarenko, S.
    Pozdnyakov, S.
    Zubkov, M. A.
    EUROPEAN PHYSICAL JOURNAL C, 2021, 81 (07):
  • [29] UNIVERSE IN A BLACK HOLE IN EINSTEIN-CARTAN GRAVITY
    Poplawski, Nikodem
    ASTROPHYSICAL JOURNAL, 2016, 832 (02):
  • [30] Phantom dark ghost in Einstein-Cartan gravity
    Chang, Yu-Chiao
    Bouhmadi-Lopez, Mariam
    Chen, Pisin
    EUROPEAN PHYSICAL JOURNAL C, 2017, 77 (05):