A comprehensive family of bi-univalent functions defined by (m, n)-Lucas polynomials

被引:0
|
作者
S. R. Swamy
Abbas Kareem Wanas
机构
[1] RV College of Engineering,Department of Computer Science and Engineering
[2] University of Al-Qadisiyah,Department of Mathematics, College of Science
关键词
Fekete–Szegö functional; Regular function; Bi-univalent function; (; , ; )-Lucas polynomial; Primary 30C45; Secondary 11B39;
D O I
暂无
中图分类号
学科分类号
摘要
Making use of (m, n)-Lucas polynomials, we propose a comprehensive family of regular functions of the type g(z)=z+∑j=2∞djzj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g(z)=z+\sum \nolimits _{j=2}^{\infty }d_jz^j$$\end{document} which are bi-univalent in the disc {z∈C:|z|<1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{z\in {\mathbb {C}}:|z| <1\}$$\end{document}. We find estimates on the coefficients |d2|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|d_2|$$\end{document}, |d3|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|d_3|$$\end{document} and the of Fekete–Szegö functional for members of this subfamily. Relevant connections to existing results and new consequences of the main result are also presented.
引用
收藏
相关论文
共 50 条
  • [31] Subclasses of bi-univalent functions subordinate to gegenbauer polynomials
    Ala Amourah
    Zabidin Salleh
    B. A. Frasin
    Muhammad Ghaffar Khan
    Bakhtiar Ahmad
    Afrika Matematika, 2023, 34
  • [32] Subclasses of bi-univalent functions subordinate to gegenbauer polynomials
    Amourah, Ala
    Salleh, Zabidin
    Frasin, B. A.
    Khan, Muhammad Ghaffar
    Ahmad, Bakhtiar
    AFRIKA MATEMATIKA, 2023, 34 (03)
  • [33] FEKETE-SZEGO INEQUALITY FOR ANALYTIC AND BI-UNIVALENT FUNCTIONS SUBORDINATE TO (p, q)-LUCAS POLYNOMIALS
    Amourah, Ala
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2021, 11 (04): : 959 - 965
  • [34] Horadam polynomials for a new family of λ-pseudo bi-univalent functions associated with Sakaguchi type functions
    Wanas, Abbas Kareem
    AFRIKA MATEMATIKA, 2021, 32 (5-6) : 879 - 889
  • [35] LUCAS POLYNOMIALS AND APPLICATIONS TO AN UNIFIED CLASS OF BI-UNIVALENT FUNCTIONS EQUIPPED WITH (P,Q)-DERIVATIVE OPERATORS
    Altinkaya, Sahsene
    Yalcin, Sibel
    TWMS JOURNAL OF PURE AND APPLIED MATHEMATICS, 2020, 11 (01): : 100 - 108
  • [36] Bounds on Coefficients for a Subclass of Bi-Univalent Functions with Lucas-Balancing Polynomials and Ruscheweyh Derivative Operator
    Hussen, Abdulmtalb
    Alamari, Moamar M.
    INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2024, 19 (04): : 1237 - 1249
  • [37] A comprehensive subclass of bi-univalent functions defined by a linear combination and satisfying subordination conditions
    Srivastava, Hari Mohan
    Sabir, Pishtiwan Othman
    Abdullah, Khalid Ibrahim
    Mohammed, Nafya Hameed
    Chorfi, Nejmeddine
    Mohammed, Pshtiwan Othman
    AIMS MATHEMATICS, 2023, 8 (12): : 29975 - 29994
  • [38] Estimates for the Coefficients of Subclasses Defined by the Bell Distribution of Bi-Univalent Functions Subordinate to Gegenbauer Polynomials
    Amourah, Ala
    Alnajar, Omar
    Darus, Maslina
    Shdouh, Ala
    Ogilat, Osama
    MATHEMATICS, 2023, 11 (08)
  • [39] Bi-Univalent Functions of Complex Order Defined by Hohlov Operator Associated with (P, Q)-Lucas Polynomial
    Muthaiyan, Elumalai
    SAHAND COMMUNICATIONS IN MATHEMATICAL ANALYSIS, 2024, 21 (01): : 273 - 289
  • [40] A Subclass of Bi-univalent Functions Defined by a Symmetric q-Derivative Operator and Gegenbauer Polynomials
    Illafe, Mohamed
    Mohd, Maisarah Haji
    Yousef, Feras
    Supramaniam, Shamani
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2024, 17 (04): : 2467 - 2480