Multiple solutions for superlinear double phase Neumann problems

被引:0
|
作者
Nikolaos S. Papageorgiou
Vicenţiu D. Rădulescu
Youpei Zhang
机构
[1] National Technical University,Department of Mathematics, Zografou Campus
[2] AGH University of Science and Technology,Faculty of Applied Mathematics
[3] Central South University,School of Mathematics and Statistics
[4] University of Craiova,Department of Mathematics
关键词
Double phase; Musielak-Orlicz-Sobolev; Constant sign and nodal solutions; Nehari manifold; Superlinear reaction; 35J75 (Primary); 35A16; 35B50; 35B51; 35J20; 35J60; 47J15; 58E05; 58E07 (Secondary);
D O I
暂无
中图分类号
学科分类号
摘要
We study a double phase Neumann problem with a superlinear reaction which need not satisfy the Ambrosetti-Rabinowitz condition. Using the Nehari manifold method, we show that the problem has at least three nontrivial bounded ground state solutions, all with sign information (positive, negative and nodal).
引用
收藏
相关论文
共 50 条
  • [1] Multiple solutions for superlinear double phase Neumann problems
    Papageorgiou, Nikolaos S.
    Radulescu, Vicentiu D.
    Zhang, Youpei
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2022, 116 (01)
  • [2] MULTIPLE SOLUTIONS FOR SUPERLINEAR p-LAPLACIAN NEUMANN PROBLEMS
    Aizicovici, Sergiu
    Papageorgiou, Nikolaos S.
    Staicu, Vasile
    OSAKA JOURNAL OF MATHEMATICS, 2012, 49 (03) : 699 - 740
  • [3] Existence of multiple solutions with precise sign information for superlinear Neumann problems
    Aizicovici, Sergiu
    Papageorgiou, Nikolaos S.
    Staicu, Vasile
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2009, 188 (04) : 679 - 715
  • [4] Multiple Nontrivial Solutions for Superlinear Double Phase Problems Via Morse Theory
    Ge, Bin
    Zhang, Beilei
    Yuan, Wenshuo
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2023, 44 (01) : 49 - 66
  • [5] Multiple Nontrivial Solutions for Superlinear Double Phase Problems Via Morse Theory
    Bin GE
    Beilei ZHANG
    Wenshuo YUAN
    Chinese Annals of Mathematics,Series B, 2023, (01) : 49 - 66
  • [6] Existence of multiple solutions with precise sign information for superlinear Neumann problems
    Sergiu Aizicovici
    Nikolaos S. Papageorgiou
    Vasile Staicu
    Annali di Matematica Pura ed Applicata, 2009, 188 : 679 - 719
  • [7] Multiple Nontrivial Solutions for Superlinear Double Phase Problems Via Morse Theory
    Bin Ge
    Beilei Zhang
    Wenshuo Yuan
    Chinese Annals of Mathematics, Series B, 2023, 44 : 49 - 66
  • [8] Constant sign and nodal solutions for superlinear double phase problems
    Gasinski, Leszek
    Papageorgiou, Nikolaos S.
    ADVANCES IN CALCULUS OF VARIATIONS, 2021, 14 (04) : 613 - 626
  • [9] Bounded weak solutions to superlinear Dirichlet double phase problems
    Angela Sciammetta
    Elisabetta Tornatore
    Patrick Winkert
    Analysis and Mathematical Physics, 2023, 13
  • [10] Bounded weak solutions to superlinear Dirichlet double phase problems
    Sciammetta, Angela
    Tornatore, Elisabetta
    Winkert, Patrick
    ANALYSIS AND MATHEMATICAL PHYSICS, 2023, 13 (02)