Multiple Nontrivial Solutions for Superlinear Double Phase Problems Via Morse Theory

被引:0
|
作者
Bin GE
Beilei ZHANG
Wenshuo YUAN
机构
[1] CollegeofMathematicalSciences,HarbinEngineeringUniversity
关键词
D O I
暂无
中图分类号
O177 [泛函分析];
学科分类号
070104 ;
摘要
The aim of this paper is the study of a double phase problems involving superlinear nonlinearities with a growth that need not satisfy the Ambrosetti-Rabinowitz condition. Using variational tools together with suitable truncation and minimax techniques with Morse theory, the authors prove the existence of one and three nontrivial weak solutions, respectively.
引用
收藏
页码:49 / 66
页数:18
相关论文
共 50 条
  • [1] Multiple Nontrivial Solutions for Superlinear Double Phase Problems Via Morse Theory
    Bin Ge
    Beilei Zhang
    Wenshuo Yuan
    Chinese Annals of Mathematics, Series B, 2023, 44 : 49 - 66
  • [2] Multiple Nontrivial Solutions for Superlinear Double Phase Problems Via Morse Theory
    Ge, Bin
    Zhang, Beilei
    Yuan, Wenshuo
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2023, 44 (01) : 49 - 66
  • [3] Divergent sequence of nontrivial solutions for superlinear double phase problems
    Papageorgiou, Nikolaos S.
    Vetro, Calogero
    Vetro, Francesca
    ASYMPTOTIC ANALYSIS, 2023, 134 (1-2) : 183 - 192
  • [4] Multiple solutions for superlinear double phase Neumann problems
    Papageorgiou, Nikolaos S.
    Radulescu, Vicentiu D.
    Zhang, Youpei
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2022, 116 (01)
  • [5] Multiple solutions for superlinear double phase Neumann problems
    Nikolaos S. Papageorgiou
    Vicenţiu D. Rădulescu
    Youpei Zhang
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2022, 116
  • [6] NONTRIVIAL SOLUTIONS OF p-SUPERLINEAR ANISOTROPIC p-LAPLACIAN SYSTEMS VIA MORSE THEORY
    Perera, Kanishka
    Agarwal, Ravi P.
    O'Regan, Donal
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2010, 35 (02) : 367 - 378
  • [7] Nontrivial solutions of discrete Kirchhoff-type problems via Morse theory
    Long, Yuhua
    ADVANCES IN NONLINEAR ANALYSIS, 2022, 11 (01) : 1352 - 1364
  • [8] Nontrivial solutions of superlinear nonlocal problems
    Bisci, Giovanni Molica
    Repovs, Dusan
    Servadei, Raffaella
    FORUM MATHEMATICUM, 2016, 28 (06) : 1095 - 1110
  • [9] NONTRIVIAL SOLUTIONS FOR SEMILINEAR DIRICHLET FORMS VIA MORSE THEORY
    方飞
    谭忠
    ActaMathematicaScientia, 2013, 33 (02) : 404 - 412
  • [10] Nontrivial solutions of quasilinear equations via nonsmooth morse theory
    Corvellec, JN
    Degiovanni, M
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1997, 136 (02) : 268 - 293