Universality and quantum criticality in quasiperiodic spin chains

被引:0
|
作者
Utkarsh Agrawal
Sarang Gopalakrishnan
Romain Vasseur
机构
[1] University of Massachusetts,Department of Physics
[2] CUNY College of Staten Island,Department of Physics and Astronomy
[3] The Graduate Center,Physics Program and Initiative for the Theoretical Sciences
[4] CUNY,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Quasiperiodic systems are aperiodic but deterministic, so their critical behavior differs from that of clean systems and disordered ones as well. Quasiperiodic criticality was previously understood only in the special limit where the couplings follow discrete quasiperiodic sequences. Here we consider generic quasiperiodic modulations; we find, remarkably, that for a wide class of spin chains, generic quasiperiodic modulations flow to discrete sequences under a real-space renormalization-group transformation. These discrete sequences are therefore fixed points of a functional renormalization group. This observation allows for an asymptotically exact treatment of the critical points. We use this approach to analyze the quasiperiodic Heisenberg, Ising, and Potts spin chains, as well as a phenomenological model for the quasiperiodic many-body localization transition.
引用
收藏
相关论文
共 50 条
  • [21] Duality, criticality, anomaly, and topology in quantum spin-1 chains
    Yang, Hong
    Li, Linhao
    Okunishi, Kouichi
    Katsura, Hosho
    PHYSICAL REVIEW B, 2023, 107 (12)
  • [22] Criticality, factorization and Wigner–Yanase skew information in quantum spin chains
    W. W. Cheng
    J. X. Li
    C. J. Shan
    L. Y. Gong
    S. M. Zhao
    Quantum Information Processing, 2015, 14 : 2535 - 2549
  • [23] Finite-size scaling for correlations of quantum spin chains at criticality
    Koma, T
    Mizukoshi, N
    JOURNAL OF STATISTICAL PHYSICS, 1996, 83 (3-4) : 661 - 726
  • [24] Emergence of criticality through a cascade of delocalization transitions in quasiperiodic chains
    V. Goblot
    A. Štrkalj
    N. Pernet
    J. L. Lado
    C. Dorow
    A. Lemaître
    L. Le Gratiet
    A. Harouri
    I. Sagnes
    S. Ravets
    A. Amo
    J. Bloch
    O. Zilberberg
    Nature Physics, 2020, 16 : 832 - 836
  • [25] Emergence of criticality through a cascade of delocalization transitions in quasiperiodic chains
    Goblot, V.
    Strkalj, A.
    Pernet, N.
    Lado, J. L.
    Dorow, C.
    Lemaitre, A.
    Le Gratiet, L.
    Harouri, A.
    Sagnes, I.
    Ravets, S.
    Amo, A.
    Bloch, J.
    Zilberberg, O.
    NATURE PHYSICS, 2020, 16 (08) : 832 - +
  • [27] Universality class of integer quantum spin chains: S=2 case study
    Qin, SJ
    Wang, XQ
    Yu, L
    PHYSICAL REVIEW B, 1997, 56 (22): : 14251 - 14254
  • [28] Criticality, factorization and Wigner-Yanase skew information in quantum spin chains
    Cheng, W. W.
    Li, J. X.
    Shan, C. J.
    Gong, L. Y.
    Zhao, S. M.
    QUANTUM INFORMATION PROCESSING, 2015, 14 (07) : 2535 - 2549
  • [29] Interacting quasiperiodic spin chains in the prethermal regime
    Tu, Yi-Ting
    Long, David M.
    Sarma, Sankar Das
    PHYSICAL REVIEW B, 2024, 109 (21)
  • [30] Quantum criticality of vanadium chains with strong relativistic spin-orbit interaction
    Chern, Gia-Wei
    Perkins, Natalia
    Japaridze, George I.
    PHYSICAL REVIEW B, 2010, 82 (17)