Related Fritz Carlson type inequalities for Sugeno integrals

被引:0
|
作者
Bayaz Daraby
Leila Arabi
机构
[1] University of Maragheh,Department of Mathematics
来源
Soft Computing | 2013年 / 17卷
关键词
Carlson’s inequality; Sugeno integral; Non-additive measure; Fuzzy integral inequality;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, two general related inequalities to Carlson type inequality for the Sugeno integrals on an abstract fuzzy measure space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(X, \mathcal{F})$$\end{document} are studied. Several examples are given to illustrate the validity of these inequalities.
引用
收藏
页码:1745 / 1750
页数:5
相关论文
共 50 条
  • [21] ON THE MINKOWSKI-HOLDER TYPE INEQUALITIES FOR GENERALIZED SUGENO INTEGRALS WITH AN APPLICATION
    Boczek, Michal
    Kaluszka, Marek
    KYBERNETIKA, 2016, 52 (03) : 329 - 347
  • [22] CARLSON,FRITZ - IN MEMORIAM
    FROSTMAN, O
    ACTA MATHEMATICA, 1953, 90 (01) : R9 - R12
  • [23] A note on a Carlson-type inequality for the Sugeno integral
    Xu, Qunfang
    Ouyang, Yao
    APPLIED MATHEMATICS LETTERS, 2012, 25 (03) : 619 - 623
  • [24] GENERAL RELATED JENSEN TYPE INEQUALITIES FOR FUZZY INTEGRALS
    Daraby, B.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2018, 8 (01): : 1 - 7
  • [25] Related Thunsdorff type and Frank-Pick type inequalities for Sugeno integral
    Daraby, B.
    Mesiar, R.
    Rostampour, F.
    Rahimi, A.
    APPLIED MATHEMATICS AND COMPUTATION, 2022, 414
  • [27] Inequalities of Carlson Type for α-Bloch Functions
    Kayumov, I. R.
    Wirths, Karl-Joachim
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2020, 17 (03)
  • [28] A Carleman Type Inequality for Sugeno Integrals
    Ma, Yunxin
    Guo, Tianfen
    MANUFACTURING PROCESS AND EQUIPMENT, PTS 1-4, 2013, 694-697 : 2874 - 2876
  • [29] FURTHER DEVELOPMENT OF CHEBYSHEV TYPE INEQUALITIES FOR SUGENO INTEGRALS AND T-(S-)EVALUATORS
    Agahi, Hamzeh
    Mesiar, Radko
    Yao Ouyang
    KYBERNETIKA, 2010, 46 (01) : 83 - 95
  • [30] GENERAL MINKOWSKI TYPE AND RELATED INEQUALITIES FOR SEMINORMED FUZZY INTEGRALS
    Daraby, Bayaz
    Ghadimi, Fatemeh
    SAHAND COMMUNICATIONS IN MATHEMATICAL ANALYSIS, 2014, 1 (01): : 9 - 20