Positive periodic solution for indefinite singular Liénard equation with p-Laplacian

被引:0
|
作者
Tiantian Zhou
Bo Du
Haiqing Du
机构
[1] Huaiyin Normal University,Department of Mathematics
关键词
Singularity; Continuation theorem; Periodic solution; 34B15;
D O I
暂无
中图分类号
学科分类号
摘要
The efficient conditions guaranteeing the existence of positive T-periodic solution to the p-Laplacian–Liénard equation (ϕp(x′(t)))′+f(x(t))x′(t)+α1(t)g(x(t))=α2(t)xμ(t),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bigl(\phi _{p}\bigl(x'(t)\bigr) \bigr)'+f \bigl(x(t)\bigr)x'(t)+\alpha _{1}(t)g\bigl(x(t)\bigr)= \frac{ \alpha _{2}(t)}{x^{\mu }(t)}, $$\end{document} are established in this paper. Here ϕp(s)=|s|p−2s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\phi _{p}(s)=|s|^{p-2}s$\end{document}, p>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p>1$\end{document}, α1,α2∈L([0,T],R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha _{1},\alpha _{2}\in L([0,T],{R}) $\end{document}, f∈C(R+,R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f\in C({R}_{+},{R})$\end{document} (R+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${R} _{+}$\end{document} stands for positive real numbers) with a singularity at x=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$x=0$\end{document}, g(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$g(x)$\end{document} is continuous on (0;+∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(0;+\infty )$\end{document}, μ is a constant with μ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mu >0$\end{document}, the signs of α1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha _{1}$\end{document} and α2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha _{2} $\end{document} are allowed to change. The approach is based on the continuation theorem for p-Laplacian-like nonlinear systems obtained by Manásevich and Mawhin in (J. Differ. Equ. 145:367–393, 1998).
引用
收藏
相关论文
共 50 条
  • [41] Ground state solution for asymptotically periodic fractional p-Laplacian equation
    Mi, Heilong
    Deng, Xiaoqing
    Zhang, Wen
    APPLIED MATHEMATICS LETTERS, 2021, 120
  • [42] Solutions for singular p-Laplacian equation in Rn
    Xiangqing Liu
    Yuxia Guo
    Jiaquan Liu
    Journal of Systems Science and Complexity, 2009, 22 : 597 - 613
  • [43] A new method for the existence of periodic solution to a p-Laplacian Lienard equation
    Du, Bo
    Zhao, Xiangkui
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2009, 29 (1-2) : 481 - 490
  • [44] POSITIVE SOLUTIONS TO THE p-LAPLACIAN WITH SINGULAR WEIGHTS
    王影
    罗党
    王明新
    Acta Mathematica Scientia, 2012, 32 (03) : 1002 - 1020
  • [45] POSITIVE SOLUTIONS TO THE p-LAPLACIAN WITH SINGULAR WEIGHTS
    Wang Ying
    Luo Dang
    Wang Mingxin
    ACTA MATHEMATICA SCIENTIA, 2012, 32 (03) : 1002 - 1020
  • [46] Nondegeneracy and Uniqueness of Periodic Solution for a Liénard Equation
    Shaowen Yao
    Wenjie Li
    Zhibo Cheng
    Qualitative Theory of Dynamical Systems, 2022, 21
  • [47] The positive solution for the nonlinear p-Laplacian Choquard equation on lattice graphs
    Liu, Yang
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2025, 27 (02)
  • [48] Periodic solutions for a generalized p-Laplacian equation
    Yang, Xiaojing
    Kim, Yong-In
    Lo, Kueiming
    APPLIED MATHEMATICS LETTERS, 2012, 25 (03) : 586 - 589
  • [49] SINGULAR PERIODIC SOLUTIONS FOR THE p-LAPLACIAN IN A PUNCTURED DOMAIN
    Ji, Shanming
    Li, Yutian
    Huang, Rui
    Yin, Jingxue
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2017, 16 (02) : 373 - 392
  • [50] Positive periodic solution for prescribed mean curvature generalized Liénard equation with a singularity
    Yun Xin
    Zhibo Cheng
    Boundary Value Problems, 2020