Mapping nanomechanical properties of live cells using multi-harmonic atomic force microscopy

被引:0
|
作者
A. Raman
S. Trigueros
A. Cartagena
A. P. Z. Stevenson
M. Susilo
E. Nauman
S. Antoranz Contera
机构
[1] School of Mechanical Engineering,Department of Physics and Institute of Nanoscience for Medicine
[2] Purdue University,undefined
[3] West Lafayette,undefined
[4] Oxford Martin School,undefined
[5] University of Oxford,undefined
[6] Birck Nanotechnology Center,undefined
[7] Purdue University,undefined
[8] West Lafayette,undefined
[9] Weldon School of Biomedical Engineering,undefined
[10] West Lafayette,undefined
来源
Nature Nanotechnology | 2011年 / 6卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The nanomechanical properties of living cells, such as their surface elastic response and adhesion, have important roles in cellular processes such as morphogenesis1, mechano-transduction2, focal adhesion3, motility4,5, metastasis6 and drug delivery7,8,9,10. Techniques based on quasi-static atomic force microscopy techniques11,12,13,14,15,16,17 can map these properties, but they lack the spatial and temporal resolution that is needed to observe many of the relevant details. Here, we present a dynamic atomic force microscopy18,19,20,21,22,23,24,25,26,27,28 method to map quantitatively the nanomechanical properties of live cells with a throughput (measured in pixels/minute) that is ∼10–1,000 times higher than that achieved with quasi-static atomic force microscopy techniques. The local properties of a cell are derived from the 0th, 1st and 2nd harmonic components of the Fourier spectrum of the AFM cantilevers interacting with the cell surface. Local stiffness, stiffness gradient and the viscoelastic dissipation of live Escherichia coli bacteria, rat fibroblasts and human red blood cells were all mapped in buffer solutions. Our method is compatible with commercial atomic force microscopes and could be used to analyse mechanical changes in tumours, cells and biofilm formation with sub-10 nm detail.
引用
收藏
页码:809 / 814
页数:5
相关论文
共 50 条
  • [41] Coherent scattering in multi-harmonic light microscopy
    Moreaux, L
    Sandre, O
    Charpak, S
    Blanchard-Desce, M
    Mertz, J
    BIOPHYSICAL JOURNAL, 2001, 80 (03) : 1568 - 1574
  • [42] Atomic Force Microscopy of Red-Light Photoreceptors Using PeakForce Quantitative Nanomechanical Property Mapping
    Kroeger, Marie E.
    Sorenson, Blaire A.
    Thomas, J. Santoro
    Stojkovic, Emina A.
    Tsonchev, Stefan
    Nicholson, Kenneth T.
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2014, (92):
  • [43] Atomic force microscopy imaging of live mammalian cells
    LI Mi
    LIU LianQing
    XI Ning
    WANG YueChao
    DONG ZaiLi
    XIAO XiuBin
    ZHANG WeiJing
    Science China(Life Sciences) , 2013, (09) : 811 - 817
  • [44] Atomic force microscopy imaging of live mammalian cells
    Li Mi
    Liu LianQing
    Xi Ning
    Wang YueChao
    Dong ZaiLi
    Xiao XiuBin
    Zhang WeiJing
    SCIENCE CHINA-LIFE SCIENCES, 2013, 56 (09) : 811 - 817
  • [45] Atomic force microscopy imaging of live mammalian cells
    Mi Li
    LianQing Liu
    Ning Xi
    YueChao Wang
    ZaiLi Dong
    XiuBin Xiao
    WeiJing Zhang
    Science China Life Sciences, 2013, 56 : 811 - 817
  • [46] Atomic force microscopy imaging of live mammalian cells
    LI Mi
    LIU LianQing
    XI Ning
    WANG YueChao
    DONG ZaiLi
    XIAO XiuBin
    ZHANG WeiJing
    Science China(Life Sciences), 2013, 56 (09) : 811 - 817
  • [47] Deformation rate dependence of nanomechanical properties as measured by atomic force microscopy
    Pittenger, Bede
    Mueller, Thomas
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 249
  • [48] Nanomechanical properties studied by atomic force microscopy in combination with an inverse methodology
    Chang, WJ
    Fang, TH
    JOURNAL OF APPLIED PHYSICS, 2004, 96 (11) : 6712 - 6716
  • [49] Quantitative nanomechanical characterization of living cells and biomaterials by atomic force microscopy
    Mueller, T.
    Henze, T.
    Richter, M.
    Stamov, D.
    Holmes, B.
    JOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE, 2014, 8 : 112 - 113
  • [50] Atomic force microscopy tip torsion contribution to the measurement of nanomechanical properties
    C. M. Almeida
    R. Prioli
    Journal of Materials Science, 2008, 43 : 5998 - 6004