Approximation Numbers of Composition Operators on the Hardy Space of the Infinite Polydisk

被引:0
|
作者
Daniel Li
Hervé Queffélec
Luis Rodríguez-Piazza
机构
[1] Univ. Artois,Laboratoire de Mathématiques de Lens (LML) EA 2462, & Fédération CNRS Nord
[2] Univ. Lille Nord de France,Pas
[3] USTL,de
[4] Universidad de Sevilla,Calais FR 2956
来源
Integral Equations and Operator Theory | 2017年 / 89卷
关键词
Approximation numbers; Composition operator; Hardy space; Infinite polydisk; Primary 47B33; Secondary 46B28; 46G20;
D O I
暂无
中图分类号
学科分类号
摘要
We study the composition operators of the Hardy space on D∞∩ℓ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb D^\infty \cap \ell _1$$\end{document}, the ℓ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _1$$\end{document} part of the infinite polydisk, and the behavior of their approximation numbers.
引用
收藏
页码:493 / 505
页数:12
相关论文
共 50 条