A class of nowhere differentiable functions satisfying some concavity-type estimate

被引:0
|
作者
Y. Fujita
N. Hamamuki
A. Siconolfi
N. Yamaguchi
机构
[1] University of Toyama,Department of Mathematics
[2] Hokkaido University,Department of Mathematics
[3] Sapienza Università di Roma,Department of Mathematics
[4] University of Toyama,Faculty of Human Development
来源
Acta Mathematica Hungarica | 2020年 / 160卷
关键词
geometric inequality; nowhere differentiable function; the Takagi function; inf-convolution; primary 26A27; secondary 39B22;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce and investigate a class P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {P}$$\end{document} of continuous and periodic functions on R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}$$\end{document}. The class P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {P}$$\end{document} is defined so that second-order central differences of a function satisfy some concavity-type estimate. Although this definition seems to be independent of nowhere differentiable character, it turns out that each function in P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {P}$$\end{document} is nowhere differentiable. The class P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {P}$$\end{document} naturally appears from both a geometrical viewpoint and an analytic viewpoint. In fact, we prove that a function belongs to P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {P}$$\end{document} if and only if some geometrical inequality holds for a family of parabolas with vertexes on this function. As its application, we study the behavior of the Hamilton–Jacobi flow starting from a function in P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {P}$$\end{document}. A connection between P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {P}$$\end{document} and some functional series is also investigated. In terms of second-order central differences, we give a necessary and sufficient condition so that a function given by the series belongs to P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {P}$$\end{document}. This enables us to construct a large number of examples of functions in P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {P}$$\end{document} through an explicit formula.
引用
收藏
页码:343 / 359
页数:16
相关论文
共 50 条
  • [21] Some Weighted Midpoint Type Inequalities For Differentiable log-Convex Functions
    Meftah, Badreddine
    Benchettah, Djaber Chemseddine
    Lakhdari, Abdelghani
    Merad, Meriem
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2025, 43
  • [22] SOME HERMITE-HADAMARD TYPE INEQUALITIES FOR DIFFERENTIABLE CONVEX FUNCTIONS AND APPLICATIONS
    Xi, Bo-Yan
    Qi, Feng
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2013, 42 (03): : 243 - 257
  • [23] Some perturbed inequalities of Ostrowski type for high-order differentiable functions and applications
    Erden, Samet
    Sarikaya, Mehmet Zeki
    JOURNAL OF APPLIED ANALYSIS, 2021, 27 (01) : 57 - 64
  • [24] On some inequalities related to fractional Hermite-Hadamard type for differentiable convex functions
    Budak, Huseyin
    Kara, Hasan
    Ali, Muhammad Aamir
    Kiris, Mehmet Eyup
    ANNALS OF THE UNIVERSITY OF CRAIOVA-MATHEMATICS AND COMPUTER SCIENCE SERIES, 2021, 48 (02): : 222 - 233
  • [25] ENERGY ESTIMATE FOR WAVE EQUATIONS WITH COEFFICIENTS IN SOME BESOV TYPE CLASS
    Tarama, Shigeo
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2007,
  • [26] Some Hermite-Hadamard-Fejer Type Integral Inequalities for Differentiable η-Convex Functions with Applications
    Delavar, M. Rostamian
    De La Sen, M.
    JOURNAL OF MATHEMATICS, 2017, 2017
  • [27] Some new parameterized Newton-type inequalities for differentiable functions via fractional integrals
    Muhammad Aamir Ali
    Christopher S. Goodrich
    Hüseyin Budak
    Journal of Inequalities and Applications, 2023
  • [28] On some new quantum midpoint-type inequalities for twice quantum differentiable convex functions
    Ali, Muhammad Aamir
    Alp, Necmettin
    Budak, Huseyin
    Chu, Yu-Ming
    Zhang, Zhiyue
    OPEN MATHEMATICS, 2021, 19 (01): : 427 - 439
  • [29] SOME JENSEN'S TYPE INEQUALITIES FOR TWICE DIFFERENTIABLE FUNCTIONS OF SELFADJOINT OPERATORS IN HILBERT SPACES
    Dragomir, Sever S.
    FILOMAT, 2009, 23 (03) : 211 - 222
  • [30] Some new parameterized Newton-type inequalities for differentiable functions via fractional integrals
    Ali, Muhammad Aamir
    Goodrich, Christopher S. S.
    Budak, Huseyin
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2023, 2023 (01)