Data-Driven Multi-Scale Modeling and Optimization for Elastic Properties of Cubic Microstructures

被引:0
|
作者
M. Hasan
Y. Mao
K. Choudhary
F. Tavazza
A. Choudhary
A. Agrawal
P. Acar
机构
[1] Virginia Tech,
[2] Northwestern University,undefined
[3] National Institute of Standards and Technology,undefined
[4] Theiss Research,undefined
关键词
Data-driven modeling; Multi-scale modeling; Microstructure;
D O I
暂无
中图分类号
学科分类号
摘要
The present work addresses gradient-based and machine learning (ML)-driven design optimization methods to enhance homogenized linear and nonlinear properties of cubic microstructures. The study computes the homogenized properties as a function of underlying microstructures by linking atomistic-scale and meso-scale models. Here, the microstructure is represented by the orientation distribution function that determines the volume densities of crystallographic orientations. The homogenized property matrix in meso-scale is computed using the single-crystal property values that are obtained by density functional theory calculations. The optimum microstructure designs are validated with the available data in the literature. The single-crystal designs, as expected, are found to provide the extreme values of the linear properties, while the optimum values of the nonlinear properties could be provided by single or polycrystalline microstructures. However, polycrystalline designs are advantageous over single crystals in terms of better manufacturability. With this in mind, an ML-based sampling algorithm is presented to identify top optimum polycrystal solutions for both linear and nonlinear properties without compromising the optimum property values. Moreover, an inverse optimization strategy is presented to design microstructures for prescribed values of homogenized properties, such as the stiffness constant (C11\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{11}$$\end{document}) and in-plane Young’s modulus (E11\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_{11}$$\end{document}). The applications are presented for aluminum (Al), nickel (Ni), and silicon (Si) microstructures.
引用
收藏
页码:230 / 240
页数:10
相关论文
共 50 条
  • [41] Multi-scale optimization
    Lucia, A
    DiMaggio, PA
    EUROPEAN SYMPOSIUM ON COMPUTER-AIDED PROCESS ENGINEERING - 14, 2004, 18 : 1093 - 1098
  • [42] Review of multi-scale mechanical behavior research on composite solid propellants based on data-driven approach
    Yuan, Bin
    Qiang, Hongfu
    Wang, Xueren
    Chen, Tiezhu
    PROPELLANTS EXPLOSIVES PYROTECHNICS, 2024, 49 (05)
  • [43] Data-driven multi-scale multi-physics models to derive process–structure–property relationships for additive manufacturing
    Wentao Yan
    Stephen Lin
    Orion L. Kafka
    Yanping Lian
    Cheng Yu
    Zeliang Liu
    Jinhui Yan
    Sarah Wolff
    Hao Wu
    Ebot Ndip-Agbor
    Mojtaba Mozaffar
    Kornel Ehmann
    Jian Cao
    Gregory J. Wagner
    Wing Kam Liu
    Computational Mechanics, 2018, 61 : 521 - 541
  • [44] Multi-scale modeling
    Engquist, B
    PERSPECTIVES IN ANALYSIS: ESSAYS IN HONOR OF LENNART CARLESON'S 75TH BIRTHDAY, 2005, 27 : 51 - 61
  • [45] Estimating multi-scale irrigation amounts using multi-resolution soil moisture data: A data-driven approach using PrISM
    Paolini, Giovanni
    Escorihuela, Maria Jose
    Merlin, Olivier
    Laluet, Pierre
    Bellvert, Joaquim
    Pellarin, Thierry
    AGRICULTURAL WATER MANAGEMENT, 2023, 290
  • [47] Modeling multi-scale data via a network of networks
    Gu, Shawn
    Jiang, Meng
    Guzzi, Pietro Hiram
    Milenkovic, Tijana
    BIOINFORMATICS, 2022, 38 (09) : 2544 - 2553
  • [48] A multi-scale framework for effective elastic properties of porous materials
    Liangsheng Wang
    Kevin K. Tseng
    Journal of Materials Science, 2003, 38 : 3019 - 3027
  • [49] A multi-scale framework for effective elastic properties of porous materials
    Wang, LS
    Tseng, KK
    JOURNAL OF MATERIALS SCIENCE, 2003, 38 (14) : 3019 - 3027
  • [50] Data-driven multi-scale mathematical modeling of SARS-CoV-2 infection reveals heterogeneity among COVID-19 patients
    Wang, Shun
    Hao, Mengqian
    Pan, Zishu
    Lei, Jinzhi
    Zou, Xiufen
    PLOS COMPUTATIONAL BIOLOGY, 2021, 17 (11)