Tikhonov regularization via flexible Arnoldi reduction

被引:0
|
作者
Lothar Reichel
Xuebo Yu
机构
[1] Kent State University,Department of Mathematical Sciences
来源
BIT Numerical Mathematics | 2015年 / 55卷
关键词
Ill-posed problem; Tikhonov regularization; Arnoldi process; Flexible GMRES; 65R30; 65R32; 65F10; 65F22;
D O I
暂无
中图分类号
学科分类号
摘要
Flexible GMRES, introduced by Saad, is a generalization of the standard GMRES method for the solution of large linear systems of equations. It is based on the flexible Arnoldi process for reducing a large square matrix to a small matrix. We describe how the flexible Arnoldi process can be applied to implement one-parameter and multi-parameter Tikhonov regularization of linear discrete ill-posed problems. The method proposed is well suited for large-scale problems. Moreover, computed examples show that our method can give approximate solutions of higher accuracy than available direct methods for small-scale problems.
引用
收藏
页码:1145 / 1168
页数:23
相关论文
共 50 条
  • [41] Tikhonov regularization with nonnegativity constraint
    Calvetti, D
    Lewis, B
    Reichel, L
    Sgallari, F
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2004, 18 : 153 - 173
  • [42] The Tikhonov regularization method in elastoplasticity
    Azikri de Deus, Hilbeth P.
    Avila S., Claudio R., Jr.
    Belo, Ivan Moura
    Beck, Andre T.
    APPLIED MATHEMATICAL MODELLING, 2012, 36 (10) : 4687 - 4707
  • [43] Tikhonov regularization with a solution constraint
    Calvetti, D
    Reichel, L
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2004, 26 (01): : 224 - 239
  • [44] A modified Tikhonov regularization method
    Yang, Xiao-Juan
    Wang, Li
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 288 : 180 - 192
  • [45] A new Tikhonov regularization method
    Fuhry, Martin
    Reichel, Lothar
    NUMERICAL ALGORITHMS, 2012, 59 (03) : 433 - 445
  • [46] TIKHONOV REGULARIZATION AND RANDOMIZED GSVD
    Wei, Yimin
    Xie, Pengpeng
    Zhang, Liping
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2016, 37 (02) : 649 - 675
  • [47] THE SATURATION PHENOMENA FOR TIKHONOV REGULARIZATION
    GROETSCH, CW
    KING, JT
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1983, 35 (OCT): : 254 - 262
  • [48] Extrapolation of Tikhonov Regularization Method
    Haemarik, U.
    Palm, R.
    Raus, T.
    MATHEMATICAL MODELLING AND ANALYSIS, 2010, 15 (01) : 55 - 68
  • [49] A new interpretation of (Tikhonov) regularization
    Gerth, Daniel
    INVERSE PROBLEMS, 2021, 37 (06)
  • [50] A new Tikhonov regularization method
    Martin Fuhry
    Lothar Reichel
    Numerical Algorithms, 2012, 59 : 433 - 445