Singular perturbation method for inhomogeneous nonlinear free boundary problems

被引:0
|
作者
Diego Moreira
Lihe Wang
机构
[1] UFC,Departamento de Matemática
[2] Bloco 914,Department of Mathematics
[3] Campus do Pici,Department of Mathematics
[4] University of Iowa,undefined
[5] Shanghai Jiaotong University,undefined
关键词
Primary 35J60; 35R35;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study solutions of one phase inhomogeneous singular perturbation problems of the type: F(D2u,x)=βε(u)+fε(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ F(D^2u,x)=\beta _{\varepsilon }(u) + f_{\varepsilon }(x) $$\end{document} and Δpu=βε(u)+fε(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \Delta _{p}u=\beta _{\varepsilon }(u) + f_{\varepsilon }(x)$$\end{document}, where βε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta _{\varepsilon }$$\end{document} approaches Dirac δ0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta _{0}$$\end{document} as ε→0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon \rightarrow 0$$\end{document} and fε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_{\varepsilon }$$\end{document} has a uniform control in Lq,q>N.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{q}, q>N.$$\end{document} Uniform local Lipschitz regularity is obtained for these solutions. The existence theory for variational (minimizers) and non variational (least supersolutions) solutions for these problems is developed. Uniform linear growth rate with respect to the distance from the ε−\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon -$$\end{document}level surfaces are established for these variational and nonvaritional solutions. Finally, letting ε→0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon \rightarrow 0$$\end{document} basic properties such as local Lipschitz regularity and non-degeneracy property are proven for the limit and a Hausdorff measure estimate for its free boundary is obtained.
引用
收藏
页码:1237 / 1261
页数:24
相关论文
共 50 条