Rational Solutions of the Painlevé-III Equation: Large Parameter Asymptotics

被引:0
|
作者
Thomas Bothner
Peter D. Miller
机构
[1] King’s College London,Department of Mathematics
[2] University of Michigan,Department of Mathematics
来源
Constructive Approximation | 2020年 / 51卷
关键词
Painlevé-III equation; Rational solutions; Large parameter asymptotics; Riemann–Hilbert problem; Nonlinear steepest descent method; Primary 34M55; Secondary 34M50; 33E17; 34E05;
D O I
暂无
中图分类号
学科分类号
摘要
The Painlevé-III equation with parameters Θ0=n+m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Theta _0=n+m$$\end{document} and Θ∞=m-n+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Theta _\infty =m-n+1$$\end{document} has a unique rational solution u(x)=un(x;m)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u(x)=u_n(x;m)$$\end{document} with un(∞;m)=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_n(\infty ;m)=1$$\end{document} whenever n∈Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\in \mathbb {Z}$$\end{document}. Using a Riemann–Hilbert representation proposed in Bothner et al. (Stud Appl Math 141:626–679, 2018), we study the asymptotic behavior of un(x;m)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_n(x;m)$$\end{document} in the limit n→+∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\rightarrow +\infty $$\end{document} with m∈C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m\in \mathbb {C}$$\end{document} held fixed. We isolate an eye-shaped domain E in the y=n-1x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$y=n^{-1}x$$\end{document} plane that asymptotically confines the poles and zeros of un(x;m)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_n(x;m)$$\end{document} for all values of the second parameter m. We then show that unless m is a half-integer, the interior of E is filled with a locally uniform lattice of poles and zeros, and the density of the poles and zeros is small near the boundary of E but blows up near the origin, which is the only fixed singularity of the Painlevé-III equation. In both the interior and exterior domains we provide accurate asymptotic formulæ for un(x;m)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_n(x;m)$$\end{document} that we compare with un(x;m)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_n(x;m)$$\end{document} itself for finite values of n to illustrate their accuracy. We also consider the exceptional cases where m is a half-integer, showing that the poles and zeros of un(x;m)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_n(x;m)$$\end{document} now accumulate along only one or the other of two “eyebrows,” i.e., exterior boundary arcs of E.
引用
收藏
页码:123 / 224
页数:101
相关论文
共 50 条
  • [21] Rational and Special Solutions for Some Painlevé Hierarchies
    Nikolay A. Kudryashov
    Regular and Chaotic Dynamics, 2019, 24 : 90 - 100
  • [22] Bessel function type solutions of the ultradiscrete Painlevé III equation with parity variables
    Shin Isojima
    Japan Journal of Industrial and Applied Mathematics, 2017, 34 : 343 - 372
  • [23] Global Asymptotics of the Second Painlevé Equation in Okamoto’s Space
    P. Howes
    N. Joshi
    Constructive Approximation, 2014, 39 : 11 - 41
  • [24] Bessel function type solutions of the ultradiscrete Painlev, III equation with parity variables
    Isojima, Shin
    JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2017, 34 (02) : 343 - 372
  • [25] Global Asymptotics of the Second Painlev, Equation in Okamoto's Space
    Howes, P.
    Joshi, N.
    CONSTRUCTIVE APPROXIMATION, 2014, 39 (01) : 11 - 41
  • [26] Tronquee Solutions of the Painlev, Equation PI
    Costin, O.
    Costin, R. D.
    Huang, M.
    CONSTRUCTIVE APPROXIMATION, 2015, 41 (03) : 467 - 494
  • [27] Hypergeometric Solutions to an Ultradiscrete Painlevé Equation
    Christopher M. Ormerod
    Journal of Nonlinear Mathematical Physics, 2010, 17 : 87 - 102
  • [28] Rational and semi-rational solutions to the Davey–Stewartson III equation
    Sheng-Nan Wang
    Guo-Fu Yu
    Nonlinear Dynamics, 2023, 111 : 7635 - 7655
  • [29] Painleve-III Monodromy Maps Under the D6 → D8 Confluence and Applications to the Large-Parameter Asymptotics of Rational Solutions
    Barhoumi, Ahmad
    Lisovyy, Oleg
    Miller, Peter D.
    Prokhorov, Andrei
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2024, 20
  • [30] PAINLEV′E ASYMPTOTICS FOR THE COUPLED SASA-SATSUMA EQUATION
    Liu, Nan
    Lan, Zhong-Zhou
    Yu, Jia-Dong
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 151 (09) : 3763 - 3778