Rational Solutions of the Painlevé-III Equation: Large Parameter Asymptotics

被引:0
|
作者
Thomas Bothner
Peter D. Miller
机构
[1] King’s College London,Department of Mathematics
[2] University of Michigan,Department of Mathematics
来源
Constructive Approximation | 2020年 / 51卷
关键词
Painlevé-III equation; Rational solutions; Large parameter asymptotics; Riemann–Hilbert problem; Nonlinear steepest descent method; Primary 34M55; Secondary 34M50; 33E17; 34E05;
D O I
暂无
中图分类号
学科分类号
摘要
The Painlevé-III equation with parameters Θ0=n+m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Theta _0=n+m$$\end{document} and Θ∞=m-n+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Theta _\infty =m-n+1$$\end{document} has a unique rational solution u(x)=un(x;m)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u(x)=u_n(x;m)$$\end{document} with un(∞;m)=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_n(\infty ;m)=1$$\end{document} whenever n∈Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\in \mathbb {Z}$$\end{document}. Using a Riemann–Hilbert representation proposed in Bothner et al. (Stud Appl Math 141:626–679, 2018), we study the asymptotic behavior of un(x;m)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_n(x;m)$$\end{document} in the limit n→+∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\rightarrow +\infty $$\end{document} with m∈C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m\in \mathbb {C}$$\end{document} held fixed. We isolate an eye-shaped domain E in the y=n-1x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$y=n^{-1}x$$\end{document} plane that asymptotically confines the poles and zeros of un(x;m)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_n(x;m)$$\end{document} for all values of the second parameter m. We then show that unless m is a half-integer, the interior of E is filled with a locally uniform lattice of poles and zeros, and the density of the poles and zeros is small near the boundary of E but blows up near the origin, which is the only fixed singularity of the Painlevé-III equation. In both the interior and exterior domains we provide accurate asymptotic formulæ for un(x;m)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_n(x;m)$$\end{document} that we compare with un(x;m)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_n(x;m)$$\end{document} itself for finite values of n to illustrate their accuracy. We also consider the exceptional cases where m is a half-integer, showing that the poles and zeros of un(x;m)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_n(x;m)$$\end{document} now accumulate along only one or the other of two “eyebrows,” i.e., exterior boundary arcs of E.
引用
收藏
页码:123 / 224
页数:101
相关论文
共 50 条
  • [1] Rational Solutions of the Painleve-III Equation: Large Parameter Asymptotics
    Bothner, Thomas
    Miller, Peter D.
    CONSTRUCTIVE APPROXIMATION, 2020, 51 (01) : 123 - 224
  • [2] Large-Degree Asymptotics of Rational Painlevé-IV Solutions by the Isomonodromy Method
    Robert J. Buckingham
    Peter D. Miller
    Constructive Approximation, 2022, 56 : 233 - 443
  • [3] Asymptotics of Solutions of the Discrete Painlevé I Equation
    Aptekarev, A. I.
    Novokshenov, V. Yu.
    MATHEMATICAL NOTES, 2024, 116 (5-6) : 1170 - 1182
  • [4] On the asymptotics of real solutions for the Painlevé I equation
    Long, Wen-Gao
    Xia, Jun
    ANALYSIS AND APPLICATIONS, 2025,
  • [5] Rational Solutions for the Discrete Painlevé Ⅱ Equation
    赵玲玲
    商朋见
    数学季刊, 1999, (03) : 24 - 29
  • [6] On a q-Difference Painlevé III Equation: II. Rational Solutions
    Kenji Kajiwara
    Journal of Nonlinear Mathematical Physics, 2003, 10 : 282 - 303
  • [7] Rational solutions for the discrete Painlevé II equation
    Kajiwara, Kenji
    Yamamoto, Kazushi
    Ohta, Yasuhiro
    Physics Letters, Section A: General, Atomic and Solid State Physics, 1997, 232 (3-4): : 189 - 199
  • [8] Rational solutions of Painlevé-Ⅱ equation as Gram determinant
    张晓恩
    陆冰滢
    Chinese Physics B, 2023, 32 (12) : 233 - 244
  • [9] Rational solutions of Painlevé-II equation as Gram determinant
    Zhang, Xiaoen
    Lu, Bing-Ying
    CHINESE PHYSICS B, 2023, 32 (12)
  • [10] Rational Solutions of Equations Associated with the Second Painlevé Equation
    Nikolay A. Kudryashov
    Regular and Chaotic Dynamics, 2020, 25 : 273 - 280