Four-point functions in momentum space: conformal ward identities in the scalar/tensor case

被引:0
|
作者
Claudio Corianò
Matteo Maria Maglio
Dimosthenis Theofilopoulos
机构
[1] Università del Salento and INFN Sezione di Lecce,Dipartimento di Matematica e Fisica
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We derive and analyze the conformal Ward identities (CWI’s) of a tensor 4-point function of a generic CFT in momentum space. The correlator involves the stress–energy tensor T and three scalar operators O (TOOO). We extend the reconstruction method for tensor correlators from 3- to 4-point functions, starting from the transverse traceless sector of the TOOO. We derive the structure of the corresponding CWI’s in two different sets of variables, relevant for the analysis of the 1–3 (1 graviton →\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rightarrow $$\end{document} 3 scalars) and 2–2 (graviton + scalar →\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rightarrow $$\end{document} two scalars) scattering processes. The equations are all expressed in terms of a single form factor. In both cases we discuss the structure of the equations and their possible behaviors in various asymptotic limits of the external invariants. A comparative analysis of the systems of equations for the TOOO and those for the OOOO, both in the general (conformal) and dual-conformal/conformal (dcc) cases, is presented. We show that in all the cases the Lauricella functions are homogeneous solutions of such systems of equations, also described as parametric 4K integrals of modified Bessel functions.
引用
收藏
相关论文
共 50 条
  • [41] Dispersion relation for CFT four-point functions
    Bissi, Agnese
    Dey, Parijat
    Hansen, Tobias
    JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (04)
  • [42] Four-point Green functions in the Schwinger model
    Radozycki, T
    Namyslowski, JM
    PHYSICAL REVIEW D, 1999, 59 (06)
  • [43] Thermal four-point functions with analytic extensions
    Weldon, HA
    PHYSICAL REVIEW D, 2005, 72 (09):
  • [44] FOUR-POINT FUNCTIONS IN N=1 SCFT
    Suchanek, Paulina
    ACTA PHYSICA POLONICA B, 2008, 39 (12): : 3163 - 3172
  • [45] Four-point conformal blocks with three heavy background operators
    Konstantin Alkalaev
    Mikhail Pavlov
    Journal of High Energy Physics, 2019
  • [46] ANOMALIES IN WARD IDENTITIES FOR 3-POINT FUNCTIONS
    GERTSEIN, IS
    JACKIW, R
    PHYSICAL REVIEW, 1969, 181 (05): : 1955 - &
  • [47] Four-point conformal blocks with three heavy background operators
    Alkalaev, Konstantin
    Pavlov, Mikhail
    JOURNAL OF HIGH ENERGY PHYSICS, 2019, 2019 (08)
  • [48] Symmetric point four-point functions at one loop in QCD
    Gracey, J. A.
    PHYSICAL REVIEW D, 2017, 95 (06)
  • [49] Anomalous Ward identities for on-shell amplitudes at the conformal fixed point
    Chicherin, Dmitry
    Henn, Johannes
    Zoia, Simone
    JOURNAL OF HIGH ENERGY PHYSICS, 2023, 2023 (06)
  • [50] Three- and four-point functions in CPT-even Lorentz-violating scalar QED
    Altschul, B.
    Brito, L. C. T.
    Felipe, J. C. C.
    Karki, S.
    Lehum, A. C.
    Petrov, A. Yu.
    PHYSICAL REVIEW D, 2023, 107 (04)