Weil Pairing for Drinfeld Modules

被引:0
|
作者
Gert-Jan van der Heiden
机构
[1] University of Nijmegen,
来源
关键词
2000 Mathematics Subject Classifications: 11G09, 11R58; Key words: Drinfeld modules, Weil pairing;
D O I
暂无
中图分类号
学科分类号
摘要
As is well-known, there exists a Weil pairing for elliptic curves which is a perfect bilinear form from the m-torsion of the elliptic curve E to the m-th roots of unity. In this paper we will show how Anderson’s paper [1] gives rise to an analogue of this pairing for Drinfeld modules.
引用
收藏
页码:115 / 143
页数:28
相关论文
共 50 条
  • [21] Integral points for Drinfeld modules
    Ghioca, Dragos
    JOURNAL OF NUMBER THEORY, 2014, 140 : 93 - 121
  • [22] ON TATE-DRINFELD MODULES
    BAE, SH
    KANG, PL
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1992, 35 (02): : 145 - 151
  • [23] Heights and isogenies of Drinfeld modules
    Breuer, Florian
    Pazuki, Fabien
    Razafinjatovo, Mahefason Heriniaina
    ACTA ARITHMETICA, 2021, 197 (02) : 111 - 128
  • [24] On a reduction map for Drinfeld modules
    Bondarewicz, Wojciech
    Krason, Piotr
    ACTA ARITHMETICA, 2020, 195 (02) : 109 - 129
  • [25] Finding endomorphisms of Drinfeld modules
    Kuhn, Nikolas
    Pink, Richard
    JOURNAL OF NUMBER THEORY, 2022, 232 : 118 - 154
  • [26] GAUSSIAN LAWS ON DRINFELD MODULES
    Kuo, Wentang
    Liu, Yu-Ru
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2009, 5 (07) : 1179 - 1203
  • [27] Formal Drinfeld modules and algebraicity
    Cadic, C
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 327 (04): : 335 - 338
  • [28] AFFINE MODULES AND THE DRINFELD CENTER
    Das, Paramita
    Ghosh, Shamindra Kumar
    Gupta, Ved Prakash
    MATHEMATICA SCANDINAVICA, 2016, 118 (01) : 119 - 151
  • [29] Linear equations on Drinfeld modules
    Chen, Yen-Tsung
    ADVANCES IN MATHEMATICS, 2023, 423
  • [30] Torsion of Drinfeld modules and gonality
    Schweizer, A
    FORUM MATHEMATICUM, 2004, 16 (06) : 925 - 941