Chain recurrence and average shadowing in dynamics

被引:0
|
作者
Fabricio F. Alves
Nilson C. Bernardes
Ali Messaoudi
机构
[1] Instituto Federal de Educação,Departamento de Matemática Aplicada, Instituto de Matemática
[2] Ciência e Tecnologia de São Paulo,Departamento de Matemática
[3] Campus Presidente Epitácio,undefined
[4] Universidade Federal do Rio de Janeiro,undefined
[5] Universidade Estadual Paulista,undefined
来源
关键词
Pseudotrajectories; Chain recurrence; Shadowing properties; Spherical linear transformations; Linear operators; Weighted shifts; Primary 37B65; 37C50; Secondary 37B05; 37C05; 47A16;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate several notions related to pseudotrajectories, including chain recurrence and shadowing properties, for a special class of diffeomorphisms on euclidean spheres, known as spherical linear transformations, and for bounded linear operators on Banach spaces. Our main results are complete characterizations of chain recurrence for spherical linear transformations on euclidean spheres and for weighted shifts on the classical Banach sequence spaces c0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c_0$$\end{document} and ℓp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _p$$\end{document}. Another main result is a characterization of hyperbolicity for invertible operators on Banach spaces by means of average expansivity and the average shadowing property.
引用
收藏
页码:665 / 697
页数:32
相关论文
共 50 条