Prediction of n-octanol–water partition coefficient of platinum (IV) complexes using correlation weights of fragments of local symmetry

被引:0
|
作者
Andrey A. Toropov
Alla P. Toropova
P. Ganga Raju Achary
机构
[1] Laboratory of Environmental Chemistry and Toxicology,Department of Chemistry, Institute of Technical Education and Research (ITER)
[2] Department of Environmental Health Science,undefined
[3] Istituto Di Ricerche Farmacologiche Mario Negri IRCCS,undefined
[4] Siksha‘O’Anusandhan University,undefined
来源
Structural Chemistry | 2023年 / 34卷
关键词
Platinum complex (IV); Fragment of Local Symmetry; logP prediction; QSPR; Monte Carlo method; CORAL software;
D O I
暂无
中图分类号
学科分类号
摘要
The octanol–water partition coefficient (logP) of platinum (IV) complexes is an essential indicator of the biological activity of coordination compounds in the aspect of potential application for drug design. The additive scheme of the logP simulation using a Simplified Molecular Input-Line Entry System (SMILES) was tested in a previous study. Here, it is proposed to take into account fragments of local symmetry (FLS) in SMILES. FLS are recognized as groups “xyx,” “xyyx,” and “xyzyx.” The CORAL software (www.insilico.eu/coral) generates optimal descriptors. The optimal descriptor is calculated using the so-called correlation weights for different SMILES fragments. Expanding the list of SMILES fragments by adding the aforementioned local symmetry markedly improves the predictive potential of models for the n-octanol–water partition coefficient of platinum (IV) coordination compounds (without FLS, the average determination coefficient for validation set is 0.87 ± 0.04, using FLS, the average becomes 0.91 ± 0.05). Thus, the involving fragments of local symmetry can improve the predictive potential of logP-models.
引用
收藏
页码:1517 / 1526
页数:9
相关论文
共 50 条
  • [1] Prediction of n-octanol-water partition coefficient of platinum (IV) complexes using correlation weights of fragments of local symmetry
    Toropov, Andrey A. A.
    Toropova, Alla P. P.
    Achary, P. Ganga Raju
    STRUCTURAL CHEMISTRY, 2023, 34 (04) : 1517 - 1526
  • [2] QSPR prediction of n-octanol/water partition coefficient for polychlorinated biphenyls
    Lue, Wenjuan
    Chen, Yonglei
    Liu, Mancang
    Chen, Xingguo
    Hu, Zhide
    CHEMOSPHERE, 2007, 69 (03) : 469 - 478
  • [3] Prediction of n-octanol/water partition coefficients with AUTOLOGP
    Devillers, J
    Domine, D
    Karchaer, W
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1996, 212 : 83 - COMP
  • [4] Using molecular hologram to predict n-octanol/water partition coefficient.
    Yue, SY
    Tomkinson, N
    Roberts, E
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1999, 217 : U705 - U705
  • [5] Assessment of n-octanol/water partition coefficient: When is the assessment reliable?
    Gombar, VK
    Enslein, K
    JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 1996, 36 (06): : 1127 - 1134
  • [6] QSPR models for polychlorinated biphenyls:: n-octanol/water partition coefficient
    Padmanabhan, J
    Parthasarathi, R
    Subramanian, V
    Chattaraj, PK
    BIOORGANIC & MEDICINAL CHEMISTRY, 2006, 14 (04) : 1021 - 1028
  • [7] Prediction of the n-octanol/water partition coefficient, logP, using a combination of semiempirical MO-calculations and a neural network
    Breindl, A
    Beck, B
    Clark, T
    Glen, RC
    JOURNAL OF MOLECULAR MODELING, 1997, 3 (03) : 142 - 155
  • [8] Prediction of the n-Octanol/Water Partition Coefficient, logP, Using a Combination of Semiempirical MO-Calculations and a Neural Network
    Andreas Breindl
    Bernd Beck
    Timothy Clark
    Robert C. Glen
    Molecular modeling annual, 1997, 3 : 142 - 155
  • [9] Water solubility and n-octanol/water partition coefficient measurements of pesticides, in freshwater and seawater
    Saranjampour, Parichehr
    Vebrosky, Emily
    Wall, Emily
    Armbrust, Kevin
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 252
  • [10] QSPR Studies on n-Octanol/water Partition Coefficient of Polychlorinated Biphenyls by Using Artificial Neural Network
    Jiao, Long
    FUTURE MATERIAL RESEARCH AND INDUSTRY APPLICATION, PTS 1 AND 2, 2012, 455-456 : 925 - 929