Atomic structure of conducting nanofilaments in TiO2 resistive switching memory

被引:0
|
作者
Kwon D.-H. [1 ]
Kim K.M. [1 ,2 ]
Jang J.H. [1 ]
Jeon J.M. [1 ]
Lee M.H. [1 ,2 ]
Kim G.H. [1 ,2 ]
Li X.-S. [3 ]
Park G.-S. [3 ]
Lee B. [4 ]
Han S. [1 ]
Kim M. [1 ]
Hwang C.S. [1 ,2 ]
机构
[1] Department of Materials Science and Engineering, Seoul National University
[2] Inter-university Semiconductor Research Center, Seoul National University
[3] Analytical Research Laboratory, Samsung Advanced Institute of Technology, Suwon 440-600
[4] Department of Physics, Ewha Womans University
基金
新加坡国家研究基金会;
关键词
D O I
10.1038/nnano.2009.456
中图分类号
学科分类号
摘要
Resistance switching in metal oxides could form the basis for next-generation non-volatile memory. It has been argued that the current in the high-conductivity state of several technologically relevant oxide materials flows through localized filaments, but these filaments have been characterized only indirectly, limiting our understanding of the switching mechanism. Here, we use high-resolution transmission electron microscopy to probe directly the nanofilaments in a Pt/TiO2/Pt system during resistive switching. In situ current-voltage and low-temperature (∼130 K) conductivity measurements confirm that switching occurs by the formation and disruption of Ti nO2n-1 (or so-called Magnéli phase) filaments. Knowledge of the composition, structure and dimensions of these filaments will provide a foundation for unravelling the full mechanism of resistance switching in oxide thin films, and help guide research into the stability and scalability of such films for applications. © 2010 Macmillan Publishers Limited. All rights reserved.
引用
收藏
页码:148 / 153
页数:5
相关论文
共 50 条
  • [21] Realization of Rectifying and Resistive Switching Behaviors of TiO2 Nanorod Arrays for Nonvolatile Memory
    Zhang, Feng
    Gan, Xiaoyan
    Li, Xiaomin
    Wu, Liang
    Gao, Xiangdong
    Zheng, Renkui
    He, Yong
    Liu, Xinjun
    Yang, Rui
    ELECTROCHEMICAL AND SOLID STATE LETTERS, 2011, 14 (10) : H422 - H425
  • [22] Impact of Annealing Ambience on Resistive Switching in Pt/TiO2/Pt Structure
    Wei, Guobin
    Goto, Yuta
    Ohta, Akio
    Makihara, Katsunori
    Murakami, Hideki
    Higashi, Seiichiro
    Miyazaki, Seiichi
    IEICE TRANSACTIONS ON ELECTRONICS, 2011, E94C (05): : 699 - 704
  • [23] Forming free resistive switching in Au/TiO2/Pt stack structure
    Luo, W. B.
    Zhang, P.
    Shuai, Y.
    Pan, X. Q.
    Wu, Q. Q.
    Wu, C. G.
    Yang, C.
    Zhang, W. L.
    THIN SOLID FILMS, 2016, 617 : 63 - 66
  • [24] Chemical and structural properties of conducting nanofilaments in TiN/HfO2-based resistive switching structures
    Calka, P.
    Martinez, E.
    Delaye, V.
    Lafond, D.
    Audoit, G.
    Mariolle, D.
    Chevalier, N.
    Grampeix, H.
    Cagli, C.
    Jousseaume, V.
    Guedj, C.
    NANOTECHNOLOGY, 2013, 24 (08)
  • [25] Atomic crystals resistive switching memory
    Liu, Chunsen
    Zhang, David Wei
    Zhou, Peng
    CHINESE PHYSICS B, 2017, 26 (03)
  • [26] Atomic crystals resistive switching memory
    刘春森
    张卫
    周鹏
    Chinese Physics B, 2017, 26 (03) : 5 - 20
  • [27] Overview on the Resistive Switching in TiO2 Solid Electrolyte
    Jeong, Doo Seok
    Thomas, Reji
    Katiyar, R. S.
    Scott, J. F.
    INTEGRATED FERROELECTRICS, 2011, 124 : 87 - 96
  • [28] Bipolar resistive switching in polycrystalline TiO2 films
    Tsunoda, K.
    Fukuzumi, Y.
    Jameson, J. R.
    Wang, Z.
    Griffin, P. B.
    Nishi, Y.
    APPLIED PHYSICS LETTERS, 2007, 90 (11)
  • [29] The influence of crystallinity on the resistive switching behavior of TiO2
    Maehne, H.
    Slesazeck, S.
    Jakschik, S.
    Dirnstorfer, I.
    Mikolajick, T.
    MICROELECTRONIC ENGINEERING, 2011, 88 (07) : 1148 - 1151
  • [30] In situ control of oxygen vacancies in TiO2 by atomic layer deposition for resistive switching devices
    Park, Sang-Joon
    Lee, Jeong-Pyo
    Jang, Jong Shik
    Rhu, Hyun
    Yu, Hyunung
    You, Byung Youn
    Kim, Chang Soo
    Kim, Kyung Joong
    Cho, Yong Jai
    Baik, Sunggi
    Lee, Woo
    NANOTECHNOLOGY, 2013, 24 (29)