Atomic structure of conducting nanofilaments in TiO2 resistive switching memory

被引:0
|
作者
Kwon D.-H. [1 ]
Kim K.M. [1 ,2 ]
Jang J.H. [1 ]
Jeon J.M. [1 ]
Lee M.H. [1 ,2 ]
Kim G.H. [1 ,2 ]
Li X.-S. [3 ]
Park G.-S. [3 ]
Lee B. [4 ]
Han S. [1 ]
Kim M. [1 ]
Hwang C.S. [1 ,2 ]
机构
[1] Department of Materials Science and Engineering, Seoul National University
[2] Inter-university Semiconductor Research Center, Seoul National University
[3] Analytical Research Laboratory, Samsung Advanced Institute of Technology, Suwon 440-600
[4] Department of Physics, Ewha Womans University
基金
新加坡国家研究基金会;
关键词
D O I
10.1038/nnano.2009.456
中图分类号
学科分类号
摘要
Resistance switching in metal oxides could form the basis for next-generation non-volatile memory. It has been argued that the current in the high-conductivity state of several technologically relevant oxide materials flows through localized filaments, but these filaments have been characterized only indirectly, limiting our understanding of the switching mechanism. Here, we use high-resolution transmission electron microscopy to probe directly the nanofilaments in a Pt/TiO2/Pt system during resistive switching. In situ current-voltage and low-temperature (∼130 K) conductivity measurements confirm that switching occurs by the formation and disruption of Ti nO2n-1 (or so-called Magnéli phase) filaments. Knowledge of the composition, structure and dimensions of these filaments will provide a foundation for unravelling the full mechanism of resistance switching in oxide thin films, and help guide research into the stability and scalability of such films for applications. © 2010 Macmillan Publishers Limited. All rights reserved.
引用
收藏
页码:148 / 153
页数:5
相关论文
共 50 条
  • [1] Atomic structure of conducting nanofilaments in TiO2 resistive switching memory
    Kwon, Deok-Hwang
    Kim, Kyung Min
    Jang, Jae Hyuck
    Jeon, Jong Myeong
    Lee, Min Hwan
    Kim, Gun Hwan
    Li, Xiang-Shu
    Park, Gyeong-Su
    Lee, Bora
    Han, Seungwu
    Kim, Miyoung
    Hwang, Cheol Seong
    NATURE NANOTECHNOLOGY, 2010, 5 (02) : 148 - 153
  • [2] Bipolar resistive switching on TiO2/Au by conducting Atomic Force Microscopy
    Linares Moreau, M.
    Barella, M.
    Lopez Mir, L.
    Ghenzi, N.
    Golmar, F.
    Granja, L. P.
    Ocal, C.
    Levy, P.
    MATERIALS TODAY-PROCEEDINGS, 2019, 14 : 100 - 103
  • [3] Direct Observation of Conducting Nanofilaments in Graphene-Oxide-Resistive Switching Memory
    Kim, Sung Kyu
    Kim, Jong Yoon
    Choi, Sung-Yool
    Lee, Jeong Yong
    Jeong, Hu Young
    ADVANCED FUNCTIONAL MATERIALS, 2015, 25 (43) : 6710 - 6715
  • [4] Resistive memory switching in ultrathin TiO2 films grown by atomic layer deposition
    Sahu, V. K.
    Misra, P.
    Ajimsha, R. S.
    Das, A. K.
    Joshi, M. P.
    Kukreja, L. M.
    DAE SOLID STATE PHYSICS SYMPOSIUM 2015, 2016, 1731
  • [5] The study of Au/TiO2/Au resistive switching memory with crosspoint structure
    Yan, An
    Liu, Gang
    Zhang, Chao
    Fang, Liang
    ADVANCES IN MATERIALS AND MATERIALS PROCESSING, PTS 1-3, 2013, 652-654 : 659 - 663
  • [6] Electrical Characteristics of TiO2-X/TiO2 Resistive Switching Memory Fabricated by Atomic Layer Deposition
    Heo, Kwan-Jun
    Kim, Won-You
    Kim, Sung-Jin
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2016, 16 (06) : 6304 - 6307
  • [7] Resistive Switching Behavior of Au/TiO2/NiCr Structure
    Cristopher, M. M.
    Dhanisha, K. M.
    Abinaya, M.
    Raj, P. Deepak
    Jeyadheepan, K.
    Sridharan, M.
    INTERNATIONAL JOURNAL OF NANOSCIENCE, 2018, 17 (03)
  • [8] Resistive Switching and Nonvolatile Memory in TiO2/CuPc Nanocomposite Devices
    Biswanath Mukherjee
    Journal of Electronic Materials, 2019, 48 : 2131 - 2136
  • [9] Resistive Switching and Nonvolatile Memory in TiO2/CuPc Nanocomposite Devices
    Mukherjee, Biswanath
    JOURNAL OF ELECTRONIC MATERIALS, 2019, 48 (04) : 2131 - 2136
  • [10] Atomic Level Simulation of TiO2-Based Resistive Switching Memory
    Gu, Xixi
    Gao, Haixia
    Yang, Mei
    Guo, Jiangzhou
    2016 13TH IEEE INTERNATIONAL CONFERENCE ON SOLID-STATE AND INTEGRATED CIRCUIT TECHNOLOGY (ICSICT), 2016, : 1224 - 1226