Correction: Corrigendum: Application of Machine-Learning Models to Predict Tacrolimus Stable Dose in Renal Transplant Recipients

被引:0
|
作者
Jie Tang
Rong Liu
Yue-Li Zhang
Mou-Ze Liu
Yong-Fang Hu
Ming-Jie Shao
Li-Jun Zhu
Hua-Wen Xin
Gui-Wen Feng
Wen-Jun Shang
Xiang-Guang Meng
Li-Rong Zhang
Ying-Zi Ming
Wei Zhang
机构
来源
Scientific Reports | / 8卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Scientific Reports 7: Article number: 42192; published online: 08 February 2017; updated: 29 January 2018. This Article contains an error in Figure 2. For CYP3A5 *3 = AG without hypertension, “N = 31 Dose = 3.73” should read: “N = 31 Dose = 4.13” The correct Figure 2 appears below as Figure 1.
引用
收藏
相关论文
共 50 条
  • [21] Comparison of tacrolimus dose requirements between African and caucasian renal transplant recipients
    Rosa, P
    Alejandra, S
    Cecilia, M
    THERAPEUTIC DRUG MONITORING, 2003, 25 (04) : 502 - 502
  • [22] Leveraging Machine Learning to Predict Occurrence and Length of Delayed Graft Function in Renal Transplant Recipients
    Nica, Alex
    Jadlowiec, Caroline C.
    Heilman, Raymond L.
    JOURNAL OF THE AMERICAN COLLEGE OF SURGEONS, 2024, 239 (05) : S493 - S493
  • [23] Population pharmacokinetics for individualization of tacrolimus dose in Jordanian pediatric renal transplant recipients
    Shilbayeh, S. A. R.
    Singh, R. P.
    Derendorf, H.
    THERAPEUTIC DRUG MONITORING, 2011, 33 (04) : 545 - 546
  • [24] Machine-learning to predict anharmonic frequencies: a study of models and transferability
    Khanifaev, Jamoliddin
    Schrader, Tim
    Perlt, Eva
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2024, 26 (35) : 23495 - 23502
  • [25] Developing Machine-Learning Models to Predict Airfield Pavement Responses
    Gungor, Osman Erman
    Al-Qadi, Imad L.
    TRANSPORTATION RESEARCH RECORD, 2018, 2672 (29) : 23 - 34
  • [26] Application of machine learning to predict tacrolimus exposure in liver and kidney transplant patients given the MeltDose formulation
    Laure Ponthier
    Pierre Marquet
    Dirk Jan A. R. Moes
    Lionel Rostaing
    Bart van Hoek
    Caroline Monchaud
    Marc Labriffe
    Jean Baptiste Woillard
    European Journal of Clinical Pharmacology, 2023, 79 : 311 - 319
  • [27] Application of machine learning to predict tacrolimus exposure in liver and kidney transplant patients given the MeltDose formulation
    Ponthier, Laure
    Marquet, Pierre
    Moes, Dirk Jan A. R.
    Rostaing, Lionel
    van Hoek, Bart
    Monchaud, Caroline
    Labriffe, Marc
    Woillard, Jean Baptiste
    EUROPEAN JOURNAL OF CLINICAL PHARMACOLOGY, 2023, 79 (02) : 311 - 319
  • [28] POPULATION PHARMACOKINETICS OF TACROLIMUS IN STABLE PAEDIATRIC RENAL TRANSPLANT RECIPIENTS TRANSLATED INTO CLINICAL PRACTICE
    Prytula, Agnieszka
    Cransberg, Karlien
    De Wildt, Saskia
    Bouts, Antonia
    Van Schaik, Ron
    Mathot, Ron
    TRANSPLANT INTERNATIONAL, 2015, 28 : 202 - 202
  • [29] POPULATION PHARMACOKINETICS OF TACROLIMUS IN STABLE PAEDIATRIC RENAL TRANSPLANT RECIPIENTS TRANSLATED INTO CLINICAL PRACTICE
    Prytula, Agnieszka
    Cransberg, Karlien
    Bouts, Antonia
    De Wildt, Saskia
    Van Schaik, Ron
    Mathot, Ron
    PEDIATRIC NEPHROLOGY, 2015, 30 (09) : 1710 - 1710
  • [30] Pharmacokinetics of tacrolimus in stable paediatric renal transplant recipients: evaluation of limited sampling strategies
    Van Damme-Lombaerts, R.
    Claeys, T.
    PEDIATRIC NEPHROLOGY, 2008, 23 (09) : 1685 - 1685