Hyperbolic Volume of Manifolds with Geodesic Boundary and Orthospectra

被引:0
|
作者
Martin Bridgeman
Jeremy Kahn
机构
[1] Boston College,Math Dept.
[2] Stony Brook University,Math Dept.
来源
关键词
Hyperbolic manifold; geodesic boundary; 30F40; 30F60; 37D35;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we describe a function Fn : R+ → R+ such that for any hyperbolic n-manifold M with totally geodesic boundary \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\partial M \neq \emptyset}$$\end{document} , the volume of M is equal to the sum of the values of Fn on the orthospectrum of M. We derive an integral formula for Fn in terms of elementary functions. We use this to give a lower bound for the volume of a hyperbolic n-manifold with totally geodesic boundary in terms of the area of the boundary.
引用
收藏
页码:1210 / 1230
页数:20
相关论文
共 50 条
  • [31] Geodesic planes in hyperbolic 3-manifolds
    Curtis T. McMullen
    Amir Mohammadi
    Hee Oh
    Inventiones mathematicae, 2017, 209 : 425 - 461
  • [32] Geodesic planes in hyperbolic 3-manifolds
    McMullen, Curtis T.
    Mohammadi, Amir
    Oh, Hee
    INVENTIONES MATHEMATICAE, 2017, 209 (02) : 425 - 461
  • [33] GEODESIC-FLOW ON MANIFOLDS OF HYPERBOLIC TYPE
    CHRISTOPHORIDOU, C
    ARCHIV DER MATHEMATIK, 1988, 51 (03) : 247 - 254
  • [34] HYPERBOLIC MANIFOLDS OF SMALL VOLUME
    Belolipetsky, Mikhail
    Emery, Vincent
    DOCUMENTA MATHEMATICA, 2014, 19 : 801 - 814
  • [35] TOPOLOGICAL ENTROPY OF GEODESIC FLOW ON MANIFOLDS OF HYPERBOLIC TYPE
    HURLEY, D
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1976, 12 (JAN): : 149 - 159
  • [36] Geodesic systems of tunnels in hyperbolic 3-manifolds
    Burton, Stephan D.
    Purcell, Jessica S.
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2014, 14 (02): : 925 - 952
  • [37] Hyperbolic manifolds with convex boundary
    Schlenker, JM
    INVENTIONES MATHEMATICAE, 2006, 163 (01) : 109 - 169
  • [38] Geodesic knots in closed hyperbolic 3-manifolds
    Kuhlmann, Sally
    GEOMETRIAE DEDICATA, 2008, 131 (01) : 181 - 211
  • [39] Upper bounds for geodesic periods over hyperbolic manifolds
    Su, Feng
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2018, 29 (01)
  • [40] Geodesic intersections in arithmetic hyperbolic 3-manifolds
    Jones, KN
    Reid, AW
    DUKE MATHEMATICAL JOURNAL, 1997, 89 (01) : 75 - 86