Computing the periods of preimages in surjective cellular automata

被引:0
|
作者
Luca Mariot
Alberto Leporati
Alberto Dennunzio
Enrico Formenti
机构
[1] Università degli Studi Milano-Bicocca,Dipartimento di Informatica, Sistemistica e Comunicazione
[2] Université Nice-Sophia Antipolis,Laboratoire I3S
来源
Natural Computing | 2017年 / 16卷
关键词
Cellular automata; Surjectivity; De Bruijn graph; Bipermutivity; Linear recurring sequences; Linear feedback shift registers; 37B15; 68Q80; 94A55;
D O I
暂无
中图分类号
学科分类号
摘要
A basic property of one-dimensional surjective cellular automata (CA) is that any preimage of a spatially periodic configuration (SPC) is spatially periodic as well. This paper investigates the relationship between the periods of SPC and the periods of their preimages for various classes of CA. When the CA is only surjective and y is a SPC of least period p, the least periods of all preimages of y are multiples of p. By leveraging on the De Bruijn graph representation of CA, we devise a general algorithm to compute the least periods appearing in the preimages of a SPC, along with their corresponding multiplicities (i.e. how many preimages have a particular least period). Next, we consider the case of linear and bipermutive cellular automata (LBCA) defined over a finite field as state alphabet. In particular, we show an equivalence between preimages of LBCA and concatenated linear recurring sequences (LRS) that allows us to give a complete characterization of their periods. Finally, we generalize these results to LBCA defined over a finite ring as alphabet.
引用
收藏
页码:367 / 381
页数:14
相关论文
共 50 条
  • [31] Computing with Virtual Cellular Automata Collider
    Martinez, Genaro J.
    Adamatzky, Andrew
    McIntosh, Harold V.
    2015 SCIENCE AND INFORMATION CONFERENCE (SAI), 2015, : 62 - 68
  • [32] Reversible computing and cellular automata - A survey
    Morita, Kenichi
    THEORETICAL COMPUTER SCIENCE, 2008, 395 (01) : 101 - 131
  • [33] Computing Shortest Paths with Cellular Automata
    Akl, Selim G.
    JOURNAL OF CELLULAR AUTOMATA, 2018, 13 (1-2) : 33 - 51
  • [34] Wave Cellular Automata for Computing Applications
    Chatzinikolaou, Theodoros Panagiotis
    Fyrigos, Iosif-Angelos
    Ntinas, Vasileios
    Kitsios, Stavros
    Bousoulas, Panagiotis
    Tsompanas, Michail-Antisthenis
    Tsoukalas, Dimitris
    Adamatzky, Andrew
    Sirakoulis, Georgios Ch
    2022 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS 22), 2022, : 3463 - 3467
  • [35] Computation of Explicit Preimages in One-Dimensional Cellular Automata Applying the De Bruijn Diagram
    Gomez Soto, Jose Manuel
    JOURNAL OF CELLULAR AUTOMATA, 2008, 3 (03) : 219 - 230
  • [36] Computing preimages of Boolean networks
    Klotz, Johannes Georg
    Bossert, Martin
    Schober, Steffen
    BMC BIOINFORMATICS, 2013, 14
  • [37] Computing preimages of Boolean networks
    Johannes Georg Klotz
    Martin Bossert
    Steffen Schober
    BMC Bioinformatics, 14
  • [38] Computing by Temporal Order: Asynchronous Cellular Automata
    Vielhaber, Michael
    ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE, 2012, (90): : 166 - 176
  • [39] Computing with cellular automata: Three cases for nonuniformity
    Sipper, M
    PHYSICAL REVIEW E, 1998, 57 (03): : 3589 - 3592
  • [40] On computing the Lyapunov exponents of reversible cellular automata
    Johan Kopra
    Natural Computing, 2021, 20 : 273 - 286