Monotone Orbifold Hurwitz Numbers

被引:0
|
作者
Do N. [1 ]
Karev M. [2 ]
机构
[1] School of Mathematical Sciences Monash University, Melbourne
[2] St.Petersburg Department of the Steklov Mathematical Institute, St.Petersburg
基金
俄罗斯基础研究基金会; 澳大利亚研究理事会;
关键词
D O I
10.1007/s10958-017-3551-9
中图分类号
学科分类号
摘要
In general, the Hurwitz numbers count the branched covers of the Riemann sphere with prescribed ramification data or, equivalently, the factorizations of a permutation with prescribed cycle structure data. In the present paper, the study of monotone orbifold Hurwitz numbers is initiated. These numbers are both variations of the orbifold case and generalizations of the monotone case. These two cases have previously been studied in the literature. We derive a cut-and-join recursion for monotone orbifold Hurwitz numbers, determine a quantum curve governing their wave function, and state an explicit conjecture relating them to topological recursion. Bibliography: 27 titles. © 2017, Springer Science+Business Media, LLC.
引用
收藏
页码:568 / 587
页数:19
相关论文
共 50 条
  • [41] On Hurwitz-Severi numbers
    Burman, Yurii
    Shapiro, Boris
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2019, 19 (01) : 155 - 167
  • [42] BKP and projective Hurwitz numbers
    Sergey M. Natanzon
    Aleksandr Yu. Orlov
    Letters in Mathematical Physics, 2017, 107 : 1065 - 1109
  • [43] Simple Hurwitz numbers of a disk
    S. M. Natanzon
    Functional Analysis and Its Applications, 2010, 44 : 36 - 47
  • [44] A Monodromy Graph Approach to the Piecewise Polynomiality of Simple, Monotone and Grothendieck Dessins d'enfants Double Hurwitz Numbers
    Hahn, Marvin Anas
    GRAPHS AND COMBINATORICS, 2019, 35 (03) : 729 - 766
  • [45] Laplacian growth in a channel and Hurwitz numbers
    Zabrodin, A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (18)
  • [46] Wall crossings for double Hurwitz numbers
    Cavalieri, Renzo
    Johnson, Paul
    Markwig, Hannah
    ADVANCES IN MATHEMATICS, 2011, 228 (04) : 1894 - 1937
  • [47] CLASSICAL HURWITZ NUMBERS AND RELATED COMBINATORICS
    Dubrovin, Boris
    Yang, Di
    Zagier, Don
    MOSCOW MATHEMATICAL JOURNAL, 2017, 17 (04) : 601 - 633
  • [48] Black holes and Hurwitz class numbers
    Kachru, Shamit
    Tripathy, Arnav
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2017, 26 (12):
  • [49] HURWITZ NUMBERS AND PRODUCTS OF RANDOM MATRICES
    Orlov, A. Yu.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2017, 192 (03) : 1282 - 1323
  • [50] Generating functions for weighted Hurwitz numbers
    Guay-Paquet, Mathieu
    Harnad, J.
    JOURNAL OF MATHEMATICAL PHYSICS, 2017, 58 (08)