Vertex-antimagic labelings of regular graphs

被引:0
|
作者
Ali Ahmad
Kashif Ali
Martin Bača
Petr Kovář
Andrea Semaničová-Feňovčíková
机构
[1] Jazan University,College of Computer Science and Information Systems
[2] COMSATS Institute of Information Technology,Faculty of Mathematics
[3] Technical University,Department of Applied Mathematics and Informatics
[4] VŠB-Technical University of Ostrava,Department of Applied Mathematics
关键词
Super vertex-antimagic total labeling; vertex-antimagic edge labeling; regular graph; 05C78;
D O I
暂无
中图分类号
学科分类号
摘要
Let G = (V,E) be a finite, simple and undirected graph with p vertices and q edges. An (a, d)-vertex-antimagic total labeling of G is a bijection f from V (G) ∪ E(G) onto the set of consecutive integers 1, 2, …, p + q, such that the vertex-weights form an arithmetic progression with the initial term a and difference d, where the vertex-weight of x is the sum of the value f(x) assigned to the vertex x together with all values f(xy) assigned to edges xy incident to x. Such labeling is called super if the smallest possible labels appear on the vertices.
引用
收藏
页码:1865 / 1874
页数:9
相关论文
共 50 条
  • [21] On d-antimagic labelings of plane graphs
    Baca, Martin
    Brankovic, Ljiljana
    Lascsakova, Marcela
    Phanalasy, Oudone
    Semanicova-Fenovcikova, Andrea
    ELECTRONIC JOURNAL OF GRAPH THEORY AND APPLICATIONS, 2013, 1 (01) : 28 - 39
  • [22] Face antimagic labelings of plane graphs Pab
    Lin, Yuqing
    Sugeng, Kiki A.
    ARS COMBINATORIA, 2006, 80 : 259 - 273
  • [23] Combinatorial Configurations in the Definition of Antimagic Labelings of Graphs
    Semeniuta, M. F.
    CYBERNETICS AND SYSTEMS ANALYSIS, 2021, 57 (02) : 196 - 204
  • [24] On (a, d)-Antimagic Labelings of Generalized Petersen Graphs
    Xu, Xirong
    Xu, Jun-Ming
    Lue, Min
    Zhang Baosheng
    Nan, Cao
    ARS COMBINATORIA, 2009, 90 : 411 - 421
  • [25] On connection between α-labelings and edge-antimagic labelings of disconnected graphs
    Baca, Martin
    Lascsakova, Marcela
    Semanicova, Andrea
    ARS COMBINATORIA, 2012, 106 : 321 - 336
  • [26] Combinatorial Configurations in the Definition of Antimagic Labelings of Graphs
    M. F. Semeniuta
    Cybernetics and Systems Analysis, 2021, 57 : 196 - 204
  • [27] Antimagic labelings of generalized Petersen graphs that are plane
    Baca, M
    Jendrol, S
    Miller, M
    Ryan, J
    ARS COMBINATORIA, 2004, 73 : 115 - 128
  • [28] Regular Bipartite Graphs Are Antimagic
    Cranston, Daniel W.
    JOURNAL OF GRAPH THEORY, 2009, 60 (03) : 173 - 182
  • [29] Antimagic Labeling of Regular Graphs
    Chang, Feihuang
    Liang, Yu-Chang
    Pan, Zhishi
    Zhu, Xuding
    JOURNAL OF GRAPH THEORY, 2016, 82 (04) : 339 - 349
  • [30] Antimagic labelling of vertex weighted graphs
    Wong, Tsai-Lien
    Zhu, Xuding
    JOURNAL OF GRAPH THEORY, 2012, 70 (03) : 348 - 359