Multimodal human action recognition based on spatio-temporal action representation recognition model

被引:0
|
作者
Qianhan Wu
Qian Huang
Xing Li
机构
[1] Hohai University,The Key Laboratory of Water Big Data Technology of Ministry of Water Resources
[2] Hohai University,School of Computer and Information
来源
关键词
Human action recognition; Multimode learning; HP-DMI; ST-GCN extractor; HTMCCA;
D O I
暂无
中图分类号
学科分类号
摘要
Human action recognition methods based on single-modal data lack adequate information. It is necessary to propose the methods based on multimodal data and the fusion algorithms to fuse different features. Meanwhile, the existing features extracted from depth videos and skeleton sequences are not representative. In this paper, we propose a new model named Spatio-temporal Action Representation Recognition Model for recognizing human actions. This model proposes a new depth feature map called Hierarchical Pyramid Depth Motion Images (HP-DMI) to represent depth videos and adopts Spatial-temporal Graph Convolutional Networks (ST-GCN) extractor to summarize skeleton features named Spatio-temporal Joint Descriptors (STJD). Histogram of Oriented Gradient (HOG) is used on HP-DMI to extract HP-DMI-HOG features. Then two kinds of features are input into a fusion algorithm High Trust Mean Canonical correlation analysis (HTMCCA). HTMCCA mitigates the impact of noisy samples on multi-feature fusion and reduces computational complexity. Finally, Support Vector Machine (SVM) is used for human action recognition. To evaluate the performance of our approach, several experiments are conducted on two public datasets. Eexperiments results prove its effectiveness.
引用
收藏
页码:16409 / 16430
页数:21
相关论文
共 50 条
  • [31] Action Recognition with Multiscale Spatio-Temporal Contexts
    Wang, Jiang
    Chen, Zhuoyuan
    Wu, Ying
    2011 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2011,
  • [32] Action Recognition Using a Spatio-Temporal Model in Dynamic Scenes
    Chathuramali, K. G. Manosha
    Rodrigo, Ranga
    2014 7TH INTERNATIONAL CONFERENCE ON INFORMATION AND AUTOMATION FOR SUSTAINABILITY (ICIAFS), 2014,
  • [33] Efficient spatio-temporal network for action recognition
    Su, Yanxiong
    Zhao, Qian
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2024, 21 (05)
  • [34] Action recognition by spatio-temporal oriented energies
    Zhen, Xiantong
    Shao, Ling
    Li, Xuelong
    INFORMATION SCIENCES, 2014, 281 : 295 - 309
  • [35] LEARNING SPATIO-TEMPORAL DEPENDENCIES FOR ACTION RECOGNITION
    Cai, Qiao
    Yin, Yafeng
    Man, Hong
    2013 20TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2013), 2013, : 3740 - 3744
  • [36] Spatio-Temporal Fusion Networks for Action Recognition
    Cho, Sangwoo
    Foroosh, Hassan
    COMPUTER VISION - ACCV 2018, PT I, 2019, 11361 : 347 - 364
  • [37] Human action recognition based on graph-embedded spatio-temporal subspace
    Tseng, Chien-Chung
    Chen, Ju-Chin
    Fang, Ching-Hsien
    Lien, Jenn-Jier James
    PATTERN RECOGNITION, 2012, 45 (10) : 3611 - 3624
  • [38] Histogram of Directional Derivative Based Spatio-temporal Descriptor for Human Action Recognition
    Bhorge, Sidharth B.
    Manthalkar, Ramachandra R.
    2017 1ST IEEE INTERNATIONAL CONFERENCE ON DATA MANAGEMENT, ANALYTICS AND INNOVATION (ICDMAI), 2017, : 42 - 46
  • [39] Spatio-temporal invariant descriptors for skeleton-based human action recognition
    Aouaidjia, Kamel
    Zhang, Chongsheng
    Pitas, Ioannis
    INFORMATION SCIENCES, 2025, 700
  • [40] A Method of Human Action Recognition Based on Spatio-temporal Interest Points and PLSA
    Du, Ke
    Shi, Ying
    Lei, Bowen
    Chen, Jie
    Sun, Mingjun
    2016 2ND INTERNATIONAL CONFERENCE ON INDUSTRIAL INFORMATICS - COMPUTING TECHNOLOGY, INTELLIGENT TECHNOLOGY, INDUSTRIAL INFORMATION INTEGRATION (ICIICII), 2016, : 69 - 72