Integrating photocatalytic reduction of CO2 with selective oxidation of tetrahydroisoquinoline over InP–In2O3 Z-scheme p-n junction

被引:0
|
作者
Bohang Zhao
Yi Huang
Dali Liu
Yifu Yu
Bin Zhang
机构
[1] Tianjin University,Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, School of Science
[2] Tianjin University,Institute of Molecular Plus
[3] Collaborative Innovation Center of Chemical Science and Engineering,undefined
来源
Science China Chemistry | 2020年 / 63卷
关键词
CO; reduction; dehydrogenation; photocatalysis; Z-scheme; tetrahydroisoquinoline;
D O I
暂无
中图分类号
学科分类号
摘要
The development of a facile strategy to construct stable hierarchal porous heterogeneous photocatalysts remains a great challenge for efficient CO2 reduction. Additionally, hole-trapping sacrificial agents (e.g., triethanolamine, triethylamine, and methanol) are mostly necessary, which produce useless chemicals, and thus cause costs/environmental concerns. Therefore, utilizing oxidation ability of holes to develop an alternative photooxidation reaction to produce value-added chemicals, especially coupled with CO2 photoreduction, is highly desirable. Here, an in situ partial phosphating method of In2O3 is reported for synthesizing InP–In2O3 p-n junction. A highly selective photooxidation of tetrahydroisoquinoline (THIQ) into value-added dihydroisoquinoline (DHIQ) is to replace the hole driven oxidation of typical sacrificial agents. Meanwhile, the photoelectrons of InP–In2O3 p-n junction can induce the efficient photoreduction of CO2 to CO with high selectivity and stability. The evolution rates of DHIQ and CO are 2 and 3.8 times higher than those of the corresponding In2O3 n-type precursor, respectively. In situ irradiated X-ray photoelectron spectroscopy and electron spin resonance are utilized to confirm that the direct Z-scheme mechanism of InP–In2O3 p-n junction accelerate the efficient separation of photocarriers.
引用
收藏
页码:28 / 34
页数:6
相关论文
共 50 条
  • [21] Constructing direct Z-scheme heterojunction g-C3N5/BiOBr for efficient photocatalytic CO2 reduction with H2O
    Wang, Lei
    Chen, Ruijie
    Zhang, Zhiqiang
    Chen, Xueru
    Ding, Jing
    Zhang, Jinfeng
    Wan, Hui
    Guan, Guofeng
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2023, 11 (02):
  • [22] Photocatalytic production of hydrogen peroxide over Z-scheme Mn3O4/Co9S8 with p-n heterostructure
    Zhang, Han
    Bai, Xuefeng
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2021, 298 (298)
  • [23] Enhanced photocatalytic CO 2 reduction over Z-scheme β-Ga 2 O 3 /TiO 2 heterojunction composite catalyst: Synthesis, performance, and mechanism
    Hua, Rui
    Huang, Yihang
    Xia, Yu
    She, Houde
    Wang, Lei
    Huang, Jingwei
    Wang, Qizhao
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2024, 12 (04):
  • [24] Z-scheme SnFe2O4/α-Fe2O3 micro-octahedron with intimated interface for photocatalytic CO2 reduction
    Jia, Yuefa
    Zhang, Weibin
    Do, Jeong Yeon
    Kang, Misook
    Liu, Chunli
    CHEMICAL ENGINEERING JOURNAL, 2020, 402
  • [25] Enhanced visible light photocatalytic CO2 reduction over direct Z-scheme heterojunction Cu/P co-doped g-C3N4@TiO2 photocatalyst
    Foghani, Mohammad Hasan
    Tavakoli, Omid
    Parnian, Mohammad Javad
    Zarghami, Reza
    CHEMICAL PAPERS, 2022, 76 (06) : 3459 - 3469
  • [26] Enhanced visible light photocatalytic CO2 reduction over direct Z-scheme heterojunction Cu/P co-doped g-C3N4@TiO2 photocatalyst
    Mohammad Hasan Foghani
    Omid Tavakoli
    Mohammad Javad Parnian
    Reza Zarghami
    Chemical Papers, 2022, 76 : 3459 - 3469
  • [27] Graphitic Carbon Nitride-Based Z-Scheme Structure for Photocatalytic CO2 Reduction
    Lin, Jingkai
    Tian, Wenjie
    Zhang, Huayang
    Duan, Xiaoguang
    Sun, Hongqi
    Wang, Shaobin
    ENERGY & FUELS, 2021, 35 (01) : 7 - 24
  • [28] Z-scheme (BiO)2CO3|Cu2O photocatalyst for highly selective CO2 to CO conversion
    Marimuthu, Thandapani
    Perumal, Sakthivel
    Lim, Taewaen
    Seo, Junhyeok
    APPLIED SURFACE SCIENCE, 2025, 687
  • [29] Artificial Z-scheme constructed with a supramolecular metal complex and semiconductor for the photocatalytic reduction of CO2
    Ishitani, O. (ishitani@chem.titech.ac.jp), 1600, American Chemical Society (135):
  • [30] ZnSe/CdSe Z-scheme composites with Se vacancy for efficient photocatalytic CO2 reduction
    Li, Dongyang
    Hussain, Sajjad
    Wang, Yanjie
    Huang, Cong
    Li, Pan
    Wang, Mengyue
    He, Tao
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2021, 286