An Accurate Measure for Multilayer Perceptron Tolerance to Weight Deviations

被引:0
|
作者
Jose L. Bernier
J. Ortega
M. M. Rodrìguez
I. Rojas
A. Prieto
机构
[1] Universidad de Granada,Dpto. Arquitectura y Tecnologìa de Computadores
来源
Neural Processing Letters | 1999年 / 10卷
关键词
mean square error degradation; multilayer perceptron; fault tolerance; statistical sensitivity;
D O I
暂无
中图分类号
学科分类号
摘要
The inherent fault tolerance of artificial neural networks (ANNs) is usually assumed, but several authors have claimed that ANNs are not always fault tolerant and have demonstrated the need to evaluate their robustness by quantitative measures. For this purpose, various alternatives have been proposed. In this paper we show the direct relation between the mean square error (MSE) and the statistical sensitivity to weight deviations, defining a measure of tolerance based on statistical sentitivity that we have called Mean Square Sensitivity (MSS); this allows us to predict accurately the degradation of the MSE when the weight values change and so constitutes a useful parameter for choosing between different configurations of MLPs. The experimental results obtained for different MLPs are shown and demonstrate the validity of our model.
引用
收藏
页码:121 / 130
页数:9
相关论文
共 50 条
  • [41] Accurate Deauthentication Attack Detection using Linear Discriminant Analysis in Comparison with Multilayer Perceptron.
    Janardhan, B.
    Jagadeesh, P.
    JOURNAL OF PHARMACEUTICAL NEGATIVE RESULTS, 2022, 13 (04) : 1764 - 1771
  • [42] DIFFUSION LEARNING FOR THE MULTILAYER PERCEPTRON
    HOPTROFF, RG
    HALL, TJ
    FIRST IEE INTERNATIONAL CONFERENCE ON ARTIFICIAL NEURAL NETWORKS, 1989, : 390 - 394
  • [43] Regularizing Multilayer Perceptron for Robustness
    Dey, Prasenjit
    Nag, Kaustuv
    Pal, Tandra
    Pal, Nikhil R.
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2018, 48 (08): : 1255 - 1266
  • [44] Colour constancy by a multilayer perceptron
    Palomares, A.
    Luque, M. J.
    Lorente, A.
    Martinez-Verdu, F. M.
    PERCEPTION, 1996, 25 : 101 - 101
  • [45] Multilayer perceptron and neural networks
    Faculty of Electromechanical and Environmental Engineering, University of Craiova, Romania
    不详
    不详
    不详
    WSEAS Trans. Circuits Syst., 2009, 7 (579-588):
  • [46] Chromium Distribution Forecasting Using Multilayer Perceptron Neural Network and Multilayer Perceptron Residual Kriging
    Tarasov, Dmitry
    Buevich, Alexander
    Shichkin, Andrey
    Subbotina, Irina
    Tyagunov, Andrey
    Baglaeva, Elena
    INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2017), 2018, 1978
  • [47] Accurate prediction of nanofluid viscosity using a multilayer perceptron artificial neural network (MLP-ANN)
    Heidari, Elham
    Sobati, Mohammad Amin
    Movahedirad, Salman
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2016, 155 : 73 - 85
  • [48] Automatic measurement and prediction of Chinese Grown Pigs weight using multilayer perceptron neural networks
    Ositanwosu, Obiajulu Emenike
    Huang, Qiong
    Liang, Yun
    Nwokoye, Chukwunonso H.
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [49] Automatic measurement and prediction of Chinese Grown Pigs weight using multilayer perceptron neural networks
    Obiajulu Emenike Ositanwosu
    Qiong Huang
    Yun Liang
    Chukwunonso H. Nwokoye
    Scientific Reports, 13
  • [50] An FPGA-based multiple-weight-and-neuron-fault tolerant digital multilayer perceptron
    Horita, T.
    Takanami, I.
    NEUROCOMPUTING, 2013, 99 : 570 - 574