An Accurate Measure for Multilayer Perceptron Tolerance to Weight Deviations

被引:0
|
作者
Jose L. Bernier
J. Ortega
M. M. Rodrìguez
I. Rojas
A. Prieto
机构
[1] Universidad de Granada,Dpto. Arquitectura y Tecnologìa de Computadores
来源
Neural Processing Letters | 1999年 / 10卷
关键词
mean square error degradation; multilayer perceptron; fault tolerance; statistical sensitivity;
D O I
暂无
中图分类号
学科分类号
摘要
The inherent fault tolerance of artificial neural networks (ANNs) is usually assumed, but several authors have claimed that ANNs are not always fault tolerant and have demonstrated the need to evaluate their robustness by quantitative measures. For this purpose, various alternatives have been proposed. In this paper we show the direct relation between the mean square error (MSE) and the statistical sensitivity to weight deviations, defining a measure of tolerance based on statistical sentitivity that we have called Mean Square Sensitivity (MSS); this allows us to predict accurately the degradation of the MSE when the weight values change and so constitutes a useful parameter for choosing between different configurations of MLPs. The experimental results obtained for different MLPs are shown and demonstrate the validity of our model.
引用
收藏
页码:121 / 130
页数:9
相关论文
共 50 条
  • [1] An accurate measure for multilayer perceptron tolerance to weight deviations
    Bernier, JL
    Ortega, J
    Rodríguez, MM
    Rojas, I
    Prieto, A
    NEURAL PROCESSING LETTERS, 1999, 10 (02) : 121 - 130
  • [2] An accurate measure for multilayer perceptron tolerance to additive weight deviations
    Bernier, JL
    Ortega, J
    Rodríguez, MM
    Rojas, I
    Prieto, A
    ENGINEERING APPLICATIONS OF BIO-INSPIRED ARTIFICIAL NEURAL NETWORKS, VOL II, 1999, 1607 : 853 - 862
  • [3] Improving the tolerance of multilayer perceptrons by minimizing the statistical sensitivity to weight deviations
    Bernier, JL
    Ortega, J
    Rojas, I
    Prieto, A
    NEUROCOMPUTING, 2000, 31 (1-4) : 87 - 103
  • [4] Impact of Weight Initialization on Multilayer Perceptron Using Fuzzy Similarity Quality Measure
    Coello, Lenniet
    Fernandez, Yumilka
    Filiberto, Yaima
    Bello, Rafael
    APPLIED COMPUTER SCIENCES IN ENGINEERING, 2016, 657 : 115 - 122
  • [5] Exponential-Weight Multilayer Perceptron
    Bayat, Farnood Merrikh
    Guo, Xinjie
    Strukov, Dmitri
    2017 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2017, : 3709 - 3715
  • [6] Analysis of weight characteristics in a Multilayer Perceptron
    Kästner, W
    Förster, T
    Hampel, R
    APPLIED COMPUTATIONAL INTELLIGENCE, 2004, : 118 - 123
  • [7] Minimizing Hexapod Robot Foot Deviations Using Multilayer Perceptron
    Valaitis, Vytautas
    Luneckas, Tomas
    Luneckas, Mindaugas
    Udris, Dainius
    INTERNATIONAL JOURNAL OF ADVANCED ROBOTIC SYSTEMS, 2015, 12
  • [8] SYNAPTIC WEIGHT NOISE DURING MULTILAYER PERCEPTRON TRAINING - FAULT-TOLERANCE AND TRAINING IMPROVEMENTS
    MURRAY, AF
    EDWARDS, PJ
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 1993, 4 (04): : 722 - 725
  • [9] A quantified sensitivity measure for multilayer perceptron to input perturbation
    Zeng, XQ
    Yeung, DS
    NEURAL COMPUTATION, 2003, 15 (01) : 183 - 212
  • [10] Sensitivity analysis of multilayer perceptron to input and weight perturbations
    Zeng, XQ
    Yeung, DS
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2001, 12 (06): : 1358 - 1366