Semi-Analytical Estimates for the Orbital Stability of Earth’s Satellites

被引:0
|
作者
Irene De Blasi
Alessandra Celletti
Christos Efthymiopoulos
机构
[1] University of Torino,Department of Mathematics
[2] University of Roma Tor Vergata,Department of Mathematics
[3] University of Padova,Department of Mathematics
来源
关键词
Stability; Normal forms; Orbital lifetime; Satellite dynamics; Space debris; 70F15; 37N05; 34C60;
D O I
暂无
中图分类号
学科分类号
摘要
Normal form stability estimates are a basic tool of Celestial Mechanics for characterizing the long-term stability of the orbits of natural and artificial bodies. Using high-order normal form constructions, we provide three different estimates for the orbital stability of point-mass satellites orbiting around the Earth. (i) We demonstrate the long-term stability of the semimajor axis within the framework of the J2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J_2$$\end{document} problem, by a normal form construction eliminating the fast angle in the corresponding Hamiltonian and obtaining HJ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {H}}_{J_2}$$\end{document}. (ii) We demonstrate the stability of the eccentricity and inclination in a secular Hamiltonian model including lunisolar perturbations (the ‘geolunisolar’ Hamiltonian Hgls\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {H}}_\mathrm{gls}$$\end{document}), after a suitable reduction of the Hamiltonian to the Laplace plane. (iii) We numerically examine the convexity and steepness properties of the integrable part of the secular Hamiltonian in both the HJ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {H}}_{J_2}$$\end{document} and Hgls\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {H}}_\mathrm{gls}$$\end{document} models, which reflect necessary conditions for the holding of Nekhoroshev’s theorem on the exponential stability of the orbits. We find that the HJ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {H}}_{J_2}$$\end{document} model is non-convex, but satisfies a ‘three-jet’ condition, while the Hgls\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {H}}_\mathrm{gls}$$\end{document} model restores quasi-convexity by adding lunisolar terms in the Hamiltonian’s integrable part.
引用
收藏
相关论文
共 50 条
  • [21] Runge–Kutta methods for a semi-analytical prediction of milling stability
    JinBo Niu
    Ye Ding
    LiMin Zhu
    Han Ding
    Nonlinear Dynamics, 2014, 76 : 289 - 304
  • [22] Semi-analytical solution for the viscoelastic relaxation in spherical earth with an axisymmetric craton
    Martinec Z.
    Acta Geodaetica et Geophysica Hungarica, 2002, 37 (1): : 61 - 78
  • [23] Semi-analytical orbital model around an oblate body with an inclined eccentric perturber
    Fu, Tao
    Wang, Yue
    Hu, Weiduo
    FRONTIERS IN ASTRONOMY AND SPACE SCIENCES, 2023, 10
  • [24] Semi-analytical theory of mean orbital motion: A new tool for computing ephemerides
    Bruinsma, S
    Exertier, P
    Metris, G
    12TH INTERNATIONAL SYMPOSIUM ON SPACE FLIGHT DYNAMICS, 1997, 403 : 289 - 294
  • [25] Analytical and semi-analytical analysis of an artificial satellite's rotational motion
    Zanardi, MC
    De Moraes, RV
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 1999, 75 (04): : 227 - 250
  • [26] Analytical propagation on relative motion of geostationary earth orbit satellites with orbital perturbations
    Zhang, Dali
    Li, Li
    Ma, Guangcheng
    Xia, Hongwei
    Wang, Changhong
    IET CONTROL THEORY AND APPLICATIONS, 2023, 17 (13): : 1752 - 1767
  • [27] Semi-analytical MBS Pricing
    Niels Rom-Poulsen
    The Journal of Real Estate Finance and Economics, 2007, 34 : 463 - 498
  • [28] On the comparison of semi-analytical methods for the stability analysis of delay differential equations
    Tweten, Dennis J.
    Lipp, Genevieve M.
    Khasawneh, Firas A.
    Mann, Brian P.
    JOURNAL OF SOUND AND VIBRATION, 2012, 331 (17) : 4057 - 4071
  • [29] Semi-analytical MBS pricing
    Rom-Poulsen, Niels
    JOURNAL OF REAL ESTATE FINANCE AND ECONOMICS, 2007, 34 (04): : 463 - 498
  • [30] Two Semi-Analytical Methods Applied to Hydrodynamic Stability of Dean Flow
    Nowruzi, H.
    Nourazar, S. Salman
    Ghassemi, H.
    JOURNAL OF APPLIED FLUID MECHANICS, 2018, 11 (05) : 1433 - 1441