Secure multi-party quantum summation based on quantum Fourier transform

被引:1
|
作者
Hui-Yi Yang
Tian-Yu Ye
机构
[1] Zhejiang Gongshang University,College of Information and Electronic Engineering
来源
关键词
Secure multi-party quantum summation; Quantum Fourier transform; Participant attack; Addition of modulo ; Secret-by-secret way;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we propose a novel secure multi-party quantum summation protocol based on quantum Fourier transform, where the traveling particles are transmitted in a tree-type mode. The party who prepares the initial quantum states is assumed to be semi-honest, which means that she may misbehave on her own but will not conspire with anyone. The proposed protocol can resist both the outside attacks and the participant attacks. Especially, one party cannot obtain other parties’ private integer strings; and it is secure for the colluding attack performed by at most n-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ n - 2 $$\end{document} parties, where n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ n $$\end{document} is the number of parties. In addition, the proposed protocol calculates the addition of modulo d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ d $$\end{document} and implements the calculation of addition in a secret-by-secret way rather than a bit-by-bit way.
引用
收藏
相关论文
共 50 条
  • [31] A (t, n)-Threshold Scheme of Multi-party Quantum Group Signature with Irregular Quantum Fourier Transform
    Shi, Jinjing
    Shi, Ronghua
    Guo, Ying
    Peng, Xiaoqi
    Lee, Moon Ho
    Park, Dongsun
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2012, 51 (04) : 1038 - 1049
  • [32] Multi-Party Quantum Summation within a d-Level Quantum System
    Ming-Yi, Duan
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2020, 59 (05) : 1638 - 1643
  • [33] A (t,n)-Threshold Scheme of Multi-party Quantum Group Signature with Irregular Quantum Fourier Transform
    Jinjing Shi
    Ronghua Shi
    Ying Guo
    Xiaoqi Peng
    Moon Ho Lee
    Dongsun Park
    International Journal of Theoretical Physics, 2012, 51 : 1038 - 1049
  • [34] Multi-Party Quantum Summation within a d-Level Quantum System
    Duan Ming-Yi
    International Journal of Theoretical Physics, 2020, 59 : 1638 - 1643
  • [35] Multi-party quantum summation with a single d-level quantum system
    Zhang, C.
    Situ, H.
    Huang, Q.
    Sun, Z.
    Huang, Z.
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2019, 17 (03)
  • [36] Rational protocol of quantum secure multi-party computation
    Dou, Zhao
    Xu, Gang
    Chen, Xiu-Bo
    Niu, Xin-Xin
    Yang, Yi-Xian
    QUANTUM INFORMATION PROCESSING, 2018, 17 (08)
  • [37] Secure Multi-party Quantum Computation with a Dishonest Majority
    Dulek, Yfke
    Grilo, Alex B.
    Jeffery, Stacey
    Majenz, Christian
    Schaffner, Christian
    ADVANCES IN CRYPTOLOGY - EUROCRYPT 2020, PT III, 2020, 12107 : 729 - 758
  • [38] Rational protocol of quantum secure multi-party computation
    Zhao Dou
    Gang Xu
    Xiu-Bo Chen
    Xin-Xin Niu
    Yi-Xian Yang
    Quantum Information Processing, 2018, 17
  • [39] Secure Multi-Party Quantum Private Information Query
    Tao, Hong
    Tan, Xiaoqing
    Song, Tingting
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2020, 59 (04) : 1099 - 1108
  • [40] Multi-particle-based multi-party controllable quantum secure dialogue
    Zhang, Xiao-Xue
    Zhou, Ri-Gui
    Xu, Wen-Shan
    PHYSICA SCRIPTA, 2024, 99 (10)