Secure multi-party quantum summation based on quantum Fourier transform

被引:1
|
作者
Hui-Yi Yang
Tian-Yu Ye
机构
[1] Zhejiang Gongshang University,College of Information and Electronic Engineering
来源
关键词
Secure multi-party quantum summation; Quantum Fourier transform; Participant attack; Addition of modulo ; Secret-by-secret way;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we propose a novel secure multi-party quantum summation protocol based on quantum Fourier transform, where the traveling particles are transmitted in a tree-type mode. The party who prepares the initial quantum states is assumed to be semi-honest, which means that she may misbehave on her own but will not conspire with anyone. The proposed protocol can resist both the outside attacks and the participant attacks. Especially, one party cannot obtain other parties’ private integer strings; and it is secure for the colluding attack performed by at most n-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ n - 2 $$\end{document} parties, where n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ n $$\end{document} is the number of parties. In addition, the proposed protocol calculates the addition of modulo d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ d $$\end{document} and implements the calculation of addition in a secret-by-secret way rather than a bit-by-bit way.
引用
收藏
相关论文
共 50 条
  • [1] Secure multi-party quantum summation based on quantum Fourier transform
    Yang, Hui-Yi
    Ye, Tian-Yu
    QUANTUM INFORMATION PROCESSING, 2018, 17 (06)
  • [2] Improvements on “Secure multi-party quantum summation based on quantum Fourier transform”
    Cai Zhang
    Mohsen Razavi
    Zhiwei Sun
    Haozhen Situ
    Quantum Information Processing, 2019, 18
  • [3] Improvements on "Secure multi-party quantum summation based on quantum Fourier transform"
    Zhang, Cai
    Razavi, Mohsen
    Sun, Zhiwei
    Situ, Haozhen
    QUANTUM INFORMATION PROCESSING, 2019, 18 (11)
  • [4] A quantum secure multi-party summation protocol with quantum Fourier transform
    Pan, Hong-Ming
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2024, 22 (08)
  • [5] Quantum secure multi-party summation protocol based on blind matrix and quantum Fourier transform
    Yi, Xin
    Cao, Cong
    Fan, Ling
    Zhang, Ru
    QUANTUM INFORMATION PROCESSING, 2021, 20 (07)
  • [6] Quantum secure multi-party summation protocol based on blind matrix and quantum Fourier transform
    Xin Yi
    Cong Cao
    Ling Fan
    Ru Zhang
    Quantum Information Processing, 2021, 20
  • [7] Secure Multi-Party Quantum Summation Based on Quantum Homomorphic Encryption
    Xu, Gang
    Yun, Fan
    Chen, Xiu-Bo
    Xu, Shiyuan
    Wang, Jingzhong
    Shang, Tao
    Chang, Yan
    Dong, Mianxiong
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2022, 34 (01): : 531 - 541
  • [8] Quantum protocols for secure multi-party summation
    ZhaoXu Ji
    HuanGuo Zhang
    HouZhen Wang
    FuSheng Wu
    JianWei Jia
    WanQing Wu
    Quantum Information Processing, 2019, 18
  • [9] Quantum protocols for secure multi-party summation
    Ji, ZhaoXu
    Zhang, HuanGuo
    Wang, HouZhen
    Wu, FuSheng
    Jia, JianWei
    Wu, WanQing
    QUANTUM INFORMATION PROCESSING, 2019, 18 (06)
  • [10] Quantum secure multi-party computational geometry based on multi-party summation and multiplication
    Dou, Zhao
    Wang, Yifei
    Liu, Zhaoqian
    Bi, Jingguo
    Chen, Xiubo
    Li, Lixiang
    QUANTUM SCIENCE AND TECHNOLOGY, 2024, 9 (02)